Thermal phase change and activation energy of crystallization of Ge-Sb-Te-Sn thin films

Sipeng Gu (顾四朋) 1, 2, Lisong Hou (侯立松) 1, Qitao Zhao (赵启涛) 1, and Rui’an Huang (黄瑞安) 1

1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2 Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA

Received June 17, 2003

To improve the optical storage performance, Sn was doped into Ge2Sb2Te5 phase change thin films. The optical and thermal properties of Sn-doped Ge2Sb2Te5 film were investigated. The crystal structures of the as-sputtered and the annealed films were identified by the X-ray diffraction (XRD) method. The differential scanning calorimeter (DSC) method is used to get the crystallization temperature and crystallization energy (Ea). It was found that proper Sn-doping could improve storage performance of the Ge2Sb2Te5 media.

Recently, the demand of high-speed and high-density optical recording media is very high. Ge2Sb2Te5 alloy is one of the most widely used recording materials for phase-change optical media. The working principle is that phase-change film is the reflectivity difference between the amorphous phase and the crystalline phase of the films.

To get higher density storage, we can increase the numerical aperture (NA) of the objective lens and use shorter laser wavelength. But when the laser wavelength becomes shorter, the reflectivity of the recording films will become lower. In addition, we need materials of high crystallization rates to achieve high speed recording. So, the manipulation of the chemical composition of Ge-Sb-Te based chalcogenide has been attempted by doping small amount of other elements into the phase-change recording films to improve their optical recording performance.

In this paper, we investigated the optical and thermal properties of the Sn-doped Ge2Sb2Te5 films to develop new recording media for short wavelength high density and high-speed optical storage.

The approximate thickness films of Ge2Sb2Te5 with or without Sn doping were deposited on glass substrates using direct current (DC) sputtering method. The sputtering power used in experiments was 150 W, and the background pressure was 6.0 × 10^{-4} Pa. The Sn content of the films can be controlled by changing the number of Sn chips which put on the Ge2Sb2Te5 target. The composition of the films was analyzed by using the inductively coupled plasma atomic emission-spectrometry (ICP-AES). Thermal annealing of the as-deposited films was carried out under protection of argon in a chamber. The samples were heated to 275°C at a heating rate of 10°C/min and kept at the temperature for 30 minutes.

A reflectivity of amorphous and crystalline films was measured by using a UV/VIS/NIR spectrometer (Perkin Elmer, Lambda 900). The structures of the films before and after annealing were examined by using a Rigaku D/MAX 2550V X-ray diffraction (XRD).

The differential scanning calorimeter (DSC; TA Instruments 2910) was used to analyze the thermal behavior of the sputtered materials. Different heating rates (5, 10, 15 K/min) were adopted to study the dependence of crystallization temperatures on heating-rate.

It is clear from Fig. 1(a) that the Sn-doped films have higher reflectivity than the undoped film in both amorphous and crystalline states. The addition of Sn at 2.1 at.-% considerably increases the reflectivity of the crystalline state and from 2.1 at.-% up to 5.8 at.-% the reflectivity keeps almost constant, while that of the amorphous state shows a slight increase with increasing Sn content. Especially, the reflectivity of the Sn-doped thin films is as high as 70% at 405 nm and 60% at 300 nm.

Fig. 1. Reflection (a) and transmission (b) spectra of the Sn-doped Ge2Sb2Te5 films at amorphous (A) and crystalline (C) states as a function of Sn content at wavelengths of 650 nm, 405 nm and 300 nm, respectively.
Figure 1(b) shows the transmission spectra of the films less than 1%. It can be seen that all the films have a very low transmission.

For practical applications, a rewritable material should possess a high signal-to-noise ratio. This can be translated into a high reflectivity contrast (C), which is defined as:

$$C = 2 \times \left(\frac{R_c - R_a}{R_c + R_a} \right) \times 100\%,$$ \hspace{1cm} (1)

where R_c and R_a are the reflectivities at crystalline and amorphous states, respectively. Since no protecting or reflecting layers were used, C is the only contribution to the phase change recording film.

Figure 2 shows the reflectivity contrast of the Sn-doped Ge$_2$Sb$_2$Te$_5$ thin films at the selected wavelengths, 300, 405 and 650 nm, respectively. A significant increase in C is noticed when minor amount of Sn is doped into the Ge$_2$Sb$_2$Te$_5$ thin films. The reflectivity contrasts of the film containing 2.1 at.-% Sn are as high as 38% at 405 nm and 36% at 300 nm, indicating that proper Sn-doping can considerably improve the recording performance of the Ge$_2$Sb$_2$Te$_5$ thin films at short blue wavelength. It is worth mentioning here that there is no data of the reflectivity contrast for the film where Sn-doping at 300 nm in Fig. 2. This is because the reflectivity of the crystalline state is lower than that of the amorphous state as shown in Fig. 1(a). So the reflectivity contrast is minus value. In this case we can also conclude that the optimum content of Sn is still 2.1 at.-% in terms of maximum reflectivity contrast at 300 nm.

The XRD measurements presented in Fig. 3 show the amorphous structure for the as-sputtered and the crystallization structure for the annealed thin films. After the heat treatment, the main crystalline phases in the b, c, and d samples are the pseudobinary GeTe-Sb$_2$Te$_3$ and SnTe, while a sample only has GeTe-Sb$_2$Te$_3$. The phase of GeTe-Sb$_2$Te$_3$ has a face centered cubic (fcc) lattice and the SnTe has a cubic lattice. From the above we can see that the Sn doping in the Ge$_2$Sb$_2$Te$_5$ films promotes the formation of SnTe phase. The reason may be related to some of the Ge replaced by Sn and forming the SnTe phase.

Elements having low values of T_g/T_m (T_g is the glass transition temperature, T_m is the melting temperature) are favorable to improve the crystallization speed of reversible phase-change optical recording films. From Table 1 we can see that the T_g/T_m of Sn is lower than Ge, so the Sn-doping increases the crystallization rates.

Figure 4 shows the crystallization peaks in the DSC profiles of Ge$_2$Sb$_2$Te$_5$ thin films with different Sn content. The thickness of all the film samples used for DSC measurements is approximately 20 nm. The crystallization temperature decreases with the increase of Sn content in the films.

It is well known that the chalcogenide alloy involves a thermal activation process and the behavior can be described by the Johnson-Mehl-Avrami (J-M-A) equation:

$$\ln(T_p^2/\alpha) = \ln(E_a/R) - \ln \nu + \frac{E_a}{R T_p},$$ \hspace{1cm} (2)

where ν and E_a are the frequency factors and the activation energy for the overall transformation process, respectively, R is the Boltzmann's constant, T_p is the crystallization temperature and α is the heating rate.

Table 1. T_g and T_g/T_m of Some Elements

<table>
<thead>
<tr>
<th>Elements</th>
<th>Sb</th>
<th>Te</th>
<th>Ge</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g (K)</td>
<td>180</td>
<td>285</td>
<td>750</td>
<td>286</td>
</tr>
<tr>
<td>T_g/T_m</td>
<td>0.2</td>
<td>0.39</td>
<td>0.62</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Fig. 2. Reflectivity contrast as a function of Sn content at different wavelength.

Fig. 3. XRD patterns for the as-sputtered (a) and annealed (b) samples.
Figure 4 shows the Kissinger plots of Sn-doped Ge$_2$Sb$_2$Te$_5$ films at heating rates of 10°C/min. According to the Kissinger equation, the activation energy of crystallization (E_a) is calculated as the slope of the ln(T_p^2) vs. $1/T_p$ plot. The results show that the activation energy decreases with increasing Sn content.

Figure 5 shows the Kissinger plots of Sn-doped Ge$_2$Sb$_2$Te$_5$ films at heating rates of 10°C/min. According to the Kissinger equation, the activation energy of crystallization (E_a) is calculated as the slope of the ln(T_p^2) vs. $1/T_p$ plot. The results show that the activation energy decreases with increasing Sn content.

In conclusion, the reflectivity contrasts of Sn-doped Ge$_2$Sb$_2$Te$_5$ films increase due to Sn-doping. The reflectivity of the film with 2.1 at.-% Sn-doping is as great as 35% at 405 nm (blue light), and 36% at 300 nm (UV light). The crystallization activation energy is as high as 2.86 \times 105 J/mol at 3.8 at.-% Sn doping. This means that the proper Sn-doping not only improves the reflectivity contrasts but also increases the crystallization rates. Thus, the Sn-doped Ge$_2$Sb$_2$Te$_5$ films can be used for high speed and high density optical storage as the recording media.

The authors would like to thank Bo Liu and Jing Chen for film deposition and optical measurement. They also gratefully acknowledge the financial support by the National Natural Science Foundation of China under Grant No. 59832060. S. Gu’s e-mail address is sptgu@siom.ac.cn.

References