学术期刊可以用微信做什么，快来看看！

微信自动应答服务平台

微时代 微革命

微服务
移动互联网时代的营销革命

简单快捷 • 高效互动 • 随时随地 • 广泛传播
The effect of SRS on pilot-tone detection technique in DWDM system

Zhiguo Gao (高志国), Minghua Chen (陈明华), Hongwei Chen (陈文伟), and Shizhong Xie (谢世雄)

Department of Electronic Engineering, Tsinghua University, Beijing 100084

Received December 3, 2003

A math model that can describe the effect of stimulated Raman scattering (SRS) on pilot-tone detection technique is proposed. Through numerical simulation, it is shown that the effect of SRS could produce ghost-tones. The power of ghost-tones was larger for the channels separated further from the real-tone. The power ratio between real-tone and ghost-tones increases linearly with the increase of transmission length when propagation distance longer than 300 km.

OCIS codes: 060.0060.

Optical performance monitoring is an import issue for the design, operation and maintenance of optical transport networks (OTN). In recent years, a lot of digital and analog monitoring techniques have been proposed and reported, such as bit error rate (BER) estimation, error block detection, optical power measurement, optical signal-to-noise ratio (SNR) evaluation with optical spectrum measurement, Q-factor monitoring, and pilot-tone detection [1–7]. Among them, pilot-tone-based monitoring technique is attractive because it is reliable, cost-effective and easy to realize. This technique adds small signal sinusoidal pilot-tones to optical signals for optical performance monitoring and channel identification. Optical path changing in wavelength division multiplexing (WDM) networks and optical switch failure in optical cross connection (OXC) could be easily supervised by the monitoring technique. Nevertheless the slow dynamic properties of erbium-doped fiber amplifier (EDFA) could produce ghost-tones [8], they degrade the performance of pilot-tone-based monitoring technique. These ghost-tones could not only mislead the network operators but also cause mistakes in the pilot-tone-based monitoring technique. There is an easy way to solve that problem by using high frequency (> 100 kHz) pilot-tones. However, stimulated Raman scattering (SRS) effect can also induce ghost-tones that could not be suppress only by increasing the tone frequency [9]. We analyzed the effects of SRS on pilot-tone-based WDM supervisory technique and gave the math model and showed the numerical simulation result.

The power of each WDM channel with pilot-tone can be described as

\[p_i(t) = p_i(t_0) + \Delta p_i \sin(\omega_t t + \theta_i), \]

where \(p_i \) is the average output power of the \(i \)th channel, \(\Delta p_i \) is the peak amplitude of the sinusoidal portion of the channel power, and \(\omega_t \) is the angular modulation frequency of each pilot-tone.

Further, we assume that the interchannel frequency spacing \(\Delta f \) is equal (but arbitrary), the shortest wavelength channel as channel 1, the longest wavelength channel as channel \(N \), and the Raman gain profile of silica fiber is a triangular function [10]. We can therefore write

\[g_{ij} = g' (i - j) \Delta f / (2A), \]

where \(g_{ij} \) is the Raman gain efficiency between channels \(i \) and \(j \), \(A \) is effective area of optical fiber, and \(g' = dg/df \) is the slope of Raman gain profile. If \(i < j \), it is shown that the power of channel \(i \) transfer to channel \(j \) through the effect of SRS. In Ref. [11] it is means that the SRS crosstalk will be higher for low pilot-tone frequency (< 400 MHz) because fiber dispersion is not significant and cannot cause walk-off between pilot-tones at different optical wavelength. So if the pilot-tone frequency was lower than 400 MHz, the fiber’s dispersion could be neglected. After ignoring fiber’s dispersion, we may formulate the differential equations, which govern the signal light propagation in the dense wavelength division multiplexing (DWDM) transmission system with \(N \) equally spaced channels, given as

\[\frac{dp_i(z)}{dz} + \alpha \cdot p_i(z) + G \cdot p_i(z) \sum_{j=1}^{N} (j - i) p_j(z) = 0, \]

\[p_i|_{z=0} = p_i(0), \quad i = 1, 2, 3, \cdots, N, \]

\[G = g' \Delta f / 2A. \]

In Eq. (2) \(p_i(z) \) is the power of the \(n \)th channel as a function of propagation distance \(z \) and \(\alpha \) is the fiber attenuation coefficient. \(p_i(0) \) is input optical power of \(i \)th optical channel at \(z = 0 \).

With above differential equation, the following general solution can be gotten

\[p_i(z) = \frac{p_i(0) J_0 \exp(-\alpha z)}{\sum_{j=1}^{N} p_j(0) \exp(G J_0 (j - 1) L_e)} \exp(G J_0 (i - 1) L_e), \]

where \(L_e = \frac{1 - \exp(-\alpha L)}{\alpha} \) is the nonlinear effective length. If \(p_j(0) \) is a function of \(t \) as Eq. (1), \(p_i(z) \) can be expressed as

\[p_i(z) = \frac{(p_i + \Delta p_i \sin(\omega_t t + \theta_i)) J_0 \exp(-\alpha z)}{\sum_{j=1}^{N} (p_j + \Delta p_j \sin(\omega_j t + \theta_j) \exp(G J_0 (j - 1) L_e)} \exp(G J_0 (i - 1) L_e), \]

where \(J_0 = \sum_{i=1}^{N} (p_j + \Delta p_j \sin(\omega_j t + \theta_j)) \). Expression (6) http://www.col.org.cn

http://www.col.org.cn
shows that the power of the ith channel contains the pilot-tone power of the other channels. The ghost-tones have been produced through the effect of SRS among optical channels. The amplitude of ghost-tones and pilot-tone can be obtained from the Fourier transform on Eq. (6). Then the influence of SRS effect on pilot-tone-based monitoring technique can be analyzed.

To evaluate the influence of SRS effect on pilot-tone-based monitoring technique, the numerical simulation with eight channels was made. Its parameters are shown in Table 1.

The Raman gain profile was given as

$$g(\Delta f) \approx k\Delta f, \quad (\Delta f \in [0, 100] \text{ cm}^{-1}),$$
$$g(\Delta f) \approx k'\Delta f, \quad (\Delta f \in [0, 500] \text{ cm}^{-1}),$$

where $k = 2.35 \times 10^{-16} \text{ m-cm/W}$, $k' = 1.8 \times 10^{-16} \text{ m-cm/W}$, Δf is frequency shift.

If plenty of the values $p_i(z, t)$ were gotten at the same distance z in different time t, using fast Fourier transform (FFT) to $p_i(z, t)$, the electrical spectrum of pilot-tones could be gotten. The power of ghost-tones and pilot-tone could be read from the radio frequency (RF) spectrum. In this paper 32768 values were calculated at every distance z with time interval $1/(3.2768 \times 10^5)$ second.

Figures 1 and 2 show the RF spectrum of 3rd channel and 6th channel at z km. There is not any ghost-tones in each channel. The pilot-tone frequency of the 3rd channel is 100 kHz, and that of the 6th channel is 160 kHz. After channels 3 and 6 were transmitted 40 and 80 km, respectively, the ghost-tones due to the effect of SRS appear. Figures 3 and 4 show the RF spectrum of channels 3 and 6 after transmitting 80 km.

The results show that the effect of SRS can produce ghost-tones, the power of ghost-tones was larger for the channels separated further from the real-tone. It was agree with the experimental result in Ref. [9]. This result can be easily explained that the larger frequency shift of two channels, the larger Raman gain index. Figure 5 shows the powers of real-tone (frequency is 100 kHz) and ghost-tones as a function of transmission length in the 3rd channel.

Figure 6 shows the ratio between real-tone power and ghost-tones power in channel 3 (pilot-tone frequency is 100 kHz) as a function of transmission length, where real-tone frequency is 100 kHz; ghost-tones frequency is 60, 160, and 200 kHz. The ratio became larger and larger as the transmission length increases. The ratio almost kept constant when transmission length was longer than 20 km. The reason of this phenomenon is that the effective length of SRS is 20 km. The crosstalk due to the effect of SRS increases slowly when transmission length is longer than

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_e</td>
<td>$5 \times 10^{-11} \text{ m}^2$</td>
<td>Fiber Effective Area</td>
</tr>
<tr>
<td>α</td>
<td>0.2 dB/km</td>
<td>Fiber Loss</td>
</tr>
<tr>
<td>Δf</td>
<td>200 GHz</td>
<td>Channel Frequency Space</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>Channel Number</td>
</tr>
<tr>
<td>λ_1</td>
<td>1547.7 nm</td>
<td>The Shortest Wavelength</td>
</tr>
<tr>
<td>λ_8</td>
<td>1559.0 nm</td>
<td>The Longest Wavelength</td>
</tr>
<tr>
<td>z</td>
<td>$0 - 80 \text{ km}$</td>
<td>Transmission Length</td>
</tr>
<tr>
<td>ω_i</td>
<td>$2n\pi \text{ kHz}^{**}$</td>
<td>Pilot-Tones Angular Frequency</td>
</tr>
<tr>
<td>p_i</td>
<td>1 mW</td>
<td>The Average Output Power of Each Laser</td>
</tr>
<tr>
<td>Δp_i</td>
<td>0.2 mW</td>
<td>The Peak Amplitude of the Sinusoidal Portion of the Laser Power</td>
</tr>
</tbody>
</table>

* $i = 1, 2, 3, \cdots, 8$; ** $n = 60, 80, 100, 120, 140, 160, 180, 200$
SRS effective length. The separation between the channel with 200 kHz pilot-tone and the channel with 100 kHz is the largest, so the ration between ghost tone (200 kHz) and real-tone (100 kHz) is the largest at the same transmission length. That is because the pilot-tone with frequency 200 kHz is the identification of the channel with the longest wavelength, the energy of shorter wavelengths’ pilot-tone could transfer to it through SRS.

Figure 7 shows the real-tone and ghost-tones in the 3rd channel as a function of transmission. Figure 8 shows the power ratio between real-tone and ghost-tones as a function of transmission length, where transmission length is 800 km (each span is 80 km, the loss of 80-km-long single-mode fiber (SMF) can be compensated by EDFA completely), the frequency of real-tone is 100 kHz. We can see from Fig. 8 that the ratio increases linearly with the
increase of transmission length when transmit distance longer than 300 km. The power ratio between real-tone and ghost-tones changes more slowly if the transmission length is longer than 300 km. This means that fore 300-km transmission has the dominant effect on the performance degradation of pilot detection.

In conclusion, the SRS causes an energy transfer from shorter to longer wavelengths. That will induce ghost-tones in pilot-tone-based monitoring technique. We proposed math model that can describe the effect of SRS on pilot-tone-based monitoring technique. Numerical simulation based on this model with eight equally spaced channels, and the pilot-tones ranging from 60 to 200 kHz was made. It was found that the amplitude of ghost-tones was larger for the channels separated farther from the real-tone. The power ratio between real-tone and ghost-tones increases linearly with the increase of transmission length when transmit distance longer than 300 km. Fore 300-km transmission has the dominant effect on the performance degradation of pilot detection.

This work was supported by the National Natural Science Foundation of China under Grant No. 90104003. Z. Gao’s e-mail address is gaozg00@mails.tsinghua.edu.cn.

References