微信自动应答服务平台

微服务
移动互联网时代的营销革命

简单快捷 • 高效互动 • 随时随地 • 广泛传播
1.3-μm uncooled 10 Gb/s directly modulated MQW AlGaInAs/InP laser diodes

Dingli Wang (王定力)1, Ning Zhou (周 宁)1, Jun Zhang (张 俊)1, Yu Liu (刘 宇)2, Ninghua Zhu (祝宁华)2, and Linsong Li (李林松)1

1Wuhan Accelink Technologies Co., Ltd, Wuhan Research Institute of Post & Telecommunication, Wuhan 430074

2Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083

Received December 7, 2004

In this paper, we report a novel 1.3-μm uncooled AlGaInAs/InP multiple quantum well (MQW) ridge waveguide laser diode. By optimizing the design of MQW structure and facet coatings, together with the application of reversed-mesa ridge waveguide (RM-RWG) structure, polyimide planarization, and lift-off processes technology; an uncooled 1.3-μm, 10-Gb/s directly modulated MQW ridge waveguide laser diode was successfully fabricated. The threshold current and the slope efficiency were 7 mA and 0.48 mW/mA, respectively. The directly modulated bandwidths of 11 and 9.2 GHz were achieved at room temperature and 80 °C, respectively.

OCIS codes: 140.3060, 230.5200, 250.0250.

The recent increase of information traffic demands optical communication system to operate at 10 Gb/s and above even for local area networks (LAN) and metropolitan area networks (MAN). An uncooled high-speed directly modulated laser is a key component for these network applications, which is used in optical transceivers in order to reduce cost, size, and power consumption. The key for the high-speed directly modulated lasers is to increase the relaxation oscillation frequency as well as reduce the device stray capacitance. In order to realize the uncooled operation at high temperature, AlGaInAs material has been investigated as a promising candidate to improve temperature dependence of basic laser characteristics such as the threshold current and slope efficiency due to its large conduction band offset ($\Delta E_c = 0.72 \Delta E_g$). Compared with the conventional InGaAsP material system, the AlGaInAs material system also has the advantage of realizing high speed modulation due to its high relaxation frequency.

In this paper, we report a novel 1.3-μm uncooled AlGaInAs multiple quantum well (MQW) ridge waveguide laser diode. In order to get high relaxation oscillation frequency and low capacitance, we optimized the design of MQW structure and facet coatings, and adopted reversed-mesa ridge waveguide (RM-RWG) structure, polyimide planarization, and lift-off processes technology. With the RM-RWG structure of the laser diode, we can maintain the small size of the ridge neck width by using the larger upper ridge width. This is helpful for the laser diode to reduce both the electrical and thermal resistances at the same time. Because of the low dielectric constant of polyimide (~3.4) compared with SiO$_2$ (~3.9), the parasitic capacitance of the laser diode is reduced. This increases the relaxation frequency, and consequently raise the directly modulated bandwidth of the laser diode.

The schematic structure of the polyimide planarized reversed-mesa ridge waveguide laser diodes is shown in Fig. 1. The AlGaInAs MQW active layer and surrounding graded index separated confinement heterostructure (GRIN-SCH) layer were grown onto the n-type InP substrate with low-pressure metal organic chemical vapour deposition (MOCVD). The active layer consists of six 5-nm-thick 1.2% compressively strained AlGaInAs quantum wells separated by 8.5-nm-thick lattice-matched AlGaInAs barriers. The photoluminescence (PL) wavelength was adjusted to be around 1290 nm, considering the lasing wavelength shift from the PL wavelength. The cladding layer consisted of 60-nm-thick InAlAs and outer InP layers. The doping concentrations of the InAlAs cladding layer were 5×10^{17} cm$^{-3}$ for p-type and 1×10^{18} cm$^{-3}$ for n-type, respectively.

The epitaxial wafer was then processed into Fabry-Perot ridge waveguide lasers with reversed-mesa structure. The reversed side walls were formed using a HBr-containing reagent H$_3$PO$_4$. The width of the ridge neck was restricted to be about 1.8 μm while maintaining the upper ridge width about 4.5 μm (see Fig. 2), in order to reduce both the electrical and thermal resistances at the same time. After ridge formation, the trenches at two sides of the ridge were filled with polyimide by a self-alignment process. The top electrode was fabricated using lift-off method, and the radius of which was shrunk to be about 80 μm in order to reduce the capacitance of the laser diode (see Fig. 3). The cavity length

![Fig. 1. Schematic structure of 1.3-μm AlGaInAs laser diode.](http://www.col.org.cn)
achieved with a low bias level of 45 mA. For comparison, we also measured the laser diodes without polyimide planarization; the 3-dB bandwidth of which was only about 8.7 GHz at the same bias level. It shows that the polyimide planarization is an efficient way to raise the 3-dB bandwidth as reducing the capacitance of the laser diode. Figure 5(b) shows the small signal frequency responses at 80 °C. With a bias level of 45 mA, a 3-dB bandwidth of 9.2 GHz was achieved.

Figure 6 shows the 10-Gb/s (10^{11} – 1 pseudo-random binary sequence (PRBS)) eye-diagrams for the 250-μm-
long device measured at 25 and 80 °C with modulation current amplitude of 40 mA, and the direct current (DC) bias set at about 30% above the threshold. In both cases, an extinction ratio of > 8 dB was achieved, although the increased closure is observed for the higher temperature case.

In summary, compressively strained 1.3-μm AlGaInAs/InP MQW ridge waveguide lasers were fabricated. By optimizing the design of MQW structure, together with the application of reversed-mesa ridge waveguide structure, polyimide planarization, and lift-off processes technology, large bandwidths of 11 and 9.2 GHz were achieved at room temperature and 80 °C, respectively. The threshold current was 7 mA and the slope efficiency was 0.48 mW/mA at 25 °C. Large characteristic temperature of more than 90 K from 25 to 85 °C was realized. The device has possible applications in low-cost transmitters for high-bit-rate optical links.

This work was supported by the National “863” Program of China (No. 2002AA312171) and the National “973” Program of China (No. 2003CB314903). D. Wang’s e-mail address is dlwang@wri.com.cn.

References

