做科研，非一朝一夕

购买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
昂贵药物疗法。

在技术方面，里坦技术公司最近推出了第一台二极管激光器，该系统在临床使用时（脱身、术中）和消除了一个一贯的看法，即二极管激光器成本高。妨碍开发用于皮肤科的二极管激光技术。但激光器也吸引了人们的关注，主要是因为它的成本低，有可能替代皮肤再滑激光疗法中的 CO₂ 激光器。

染料激光器也正经历品种的复兴。这种激光器再也不只是用于治疗葡萄酒色斑，它现在用于毛细血管扩张、疣、痤疮消除、伤痕和头皮屑等的疾病治疗。例如，在贝克曼研究所开展的光动力疗法研究中，研究人员使用第二代 PDT 药物 ALA-5 配合氢氧激光器的染料激光器，来测定治疗牛皮癣合适的光和药物剂量，和鉴别最有效的光致敏药物。寻找一种药物，它能穿透牛皮癣的厚厚的角质膜，这一直是 PDT 疗法临床使用的一个主要障碍；一旦这个问题得到解决，PDT 疗法将可能成为牛皮癣的标准物理疗法。

染料激光器在清除痤疮伤疤方面也证明有用。华盛顿皮肤激光外科研究所一项最近的研究中，用闪光灯激光的染料激光器对痤疮伤疤进行了一二次治疗，就观察到病灶组织和外观的明显改善；六个月后治疗效果依然显著，这意味着治疗效果可能是永久性的。

不同学科技校的“碰撞”

在皮肤学中，光电光学诊断装置和光学反馈装置将发挥越来越重要的作用。例如，一项为期三年的组织—焊接研究计划中所开发出一种反馈系统，能自动确定焊接端点，并且当好的焊接完成时发出信号。该项研究计划的实施单位是利弗莫尔国家实验室和会聚能量企业公司。这种装置将有助于促使组织焊接成一种实用的医疗方法。

威尔曼实验室开发出一种光学活组织检查装置，将用于皮肤科中作为一种“病床边工具”，已接近商品化。采用共聚焦显微术，这种非侵入性仪器提供了细胞形态的实时图象，从而除除了常规范组织检查所带的损伤、伤疤、感染危险、时间耽搁、价格高等不利因素。

Rox Anderson 说，这在长期努力中，当技术上的进步使我们能更深层地研讨皮肤时，激光和光学在皮肤学上的新应用将会继续不断地出现。如果我们考虑到微电子学和激光扫描和控制系统二者之间的可能组合，就会发现我们只是刚刚取得初步成果和成绩。需要的技术是现有的，但在未来的几年中我们将看到现有的不同学科技校富有成果的碰撞。

（施志坚、罗山供稿）

CO₂ 激光能使皮肤显得年轻

二氧化碳激光器是当前皮肤激光医疗领域主要使用的激光系统；大部分选用高能脉冲 CO₂ 激光器，也有一个系统选用连续波 CO₂ 激光器和扫描装置来模拟脉冲效果，二种方式均是用于切除皮下组织的单层，但也存在一些差别，主要表现在功率、能量密度、光斑尺寸、光斑形状、切除深度、热效应和光束馈送方法上。

第一个引入这种激光疗法的激光器是高功率、高能量脉冲式 CO₂ 激光器，它发射 500mJ 的单脉冲能量，光斑尺寸 3mm。这是相干公司生产的，取名为 UltraPulse。Dale Koop 是公司美容外科计划负责人，他说，UltraPulse 采用了射频激励的板状激光器，能产生高达 600W 的方波脉冲，因而不同于该市场上其他的脉冲式激光器。“我们的竞争者采用了高电压直流激励 CO₂ 激光器，它发射出巨大的激光脉冲并迅速衰减，这意味着至少在一半的时间里激光功率低于其峰值能量。

UltraPulse 系统的第三个优点是它的准直光束对与靶之间的距离不敏感（参看图 1），和
激光与光电子学进展

1996年第7期(总第367期)

极快的发射脉冲能力(脉冲宽度窄)，后一优点允许组织在二个脉冲之间冷却，从而限制热损伤的平均深度为75μm。不过限制了每个脉冲的能量和穿透深度也意味着为了达到预期的切除深度需要多次操作，这就增加了治疗时间。

为了克服这个缺点，公司开发出一种计算机图形发生器，这是一种手持式机器人器件，它使治疗技术自动化并降低了平均治疗时间。依据治疗面积，一般为90分钟到15～30分钟之间。其工作方式是以平行光路式馈送系统的准直光束，画出一个预编程的随机图形，该图形可由50个3mm的光斑构成。医生仍需选定图形的形状和尺寸，设定激光参数，将激光照射定位，和判断切除深度，不过利用了这项自动技术后，光刀光斑的走向和搭接是完善的。

图1 上部三小图说明，由于采用了准直光束，能量密度保持恒定，不随光刀和组织之间的距离变化。下部的三小图说明，采用聚焦光束馈送时，能量密度由光刀和组织间的距离决定，不过光斑的尺寸可用手术刀机构来调节。

参与该市场的公司还有光谱医学公司，织技术公司，Heraeus/Lasersronics公司，和Cynosure公司，但能与相干公司展开竞争的公司只有夏普兰公司。它的SilkLaser系统采用了连续波CO₂激光器(20，30或40W)和一个叫做SilkTouch的闪光扫描馈送系统。计算机控制反射镜聚焦和操纵激光束，馈送系统扫描高度聚焦的激光束沿着螺旋线图案逐块切除大面

积的组织(参看图2)。

夏普兰公司的负责人Doug Mead说：“这是一台扫描式激光器，而不是一台超脉冲式激光器。激光非常快的抵达组织，使组织蒸发，以至来不及造成任何其它损坏。但是优点还不止此，我们已做了大量设计工作以便产生可控深度的均匀扫描。”其它优点还有光斑尺寸大到9mm，峰值能量1400mJ，使热效应深达约150μm，使每个病区的操作次数得以减少，因此对于较厚和较厚的皮肤治疗来说，SilkTouch系统特别好。

图2 SilkTouch馈送系统以紧密聚焦螺线图形扫描组织

有些医生已用过UltraPulse和SilkTouch二种系统，他们认为SilkTouch的较深能量穿透也增加了热损伤的危险性，特别是对于缺乏经验的使用者。再则，螺旋线图形难于保持避免(下转第33页)
认为，这种激光器对光电子领域的影响相当于 CMOS 技术对硅基电子学的影响”。虽然光纤技术已广泛用于较长距离网络，但较短距离线路的成本却无法与铜基线路相竞争（尽管前者具有性能上优点）。Husain 说，对不到 100m 的短距离而言，垂直腔面发射激光器可使高速光纤通讯网络变得成本有效。

摩托罗拉逻辑集成电路分部、霍尼威耳、惠普和 Vixel 公司都是积极发展垂直腔面发射激光器的公司。有些发展基金来自先进研究计划局和其它政府发起者，但摩托罗拉已决定以内部投资方式发展垂直腔面发射激光器和其它光学线路技术。

垂直腔面发射激光器做在 GaAs 晶片上，设计成在晶面垂直方向发射光学能量。连续潜在层形成激活区和垂直堆迭的上、下反射镜。当加上电压后，激光便沿着晶面方向发射。输出激光能量分布为圆形，可与光纤器件作较有效耦合。用同样方法可以做成线型和面型垂直腔面发射激光器阵列。

由于 p 和 n 接触均位于晶片的同一侧，垂直腔面发射激光器可在晶片水平上作探针检验。普通边缘发射 GaAs 激光器在检验前首先必须与晶片分离，并对位于所希望光输出方向位置的边缘进行组装。虽然边缘发射二极管激光器可大量生产（主要在日本）并已用于 CD-ROM，也可用于光互连光缆，但垂直腔面发射激光器可更高密度地组装，并且更廉价，从而大大降低成本费用。

另外，垂直腔面发射激光器能显著影响复杂输入/输出电子电路中的功率消耗。由于很多功率都是硅基输入/输出电路消耗的，低阈值的垂直腔面发射激光器可通过光学互连而降低功率消耗。摩托罗拉高级工程师 J. Grula 评论说，我们正在发展 10 道光线路用的垂直腔面发射激光器，其阈值电流在 1～2mA 范围。边缘发射器件的阈值一般在 25mA 以上。南加州大学和德克萨斯大学研究人员已演示的阈值为几十微安范围，为低极功率应用铺平了道路。

Grula 报导说，从制造观点看，垂直腔面发射激光器的产量和均匀性一直很好，另外，它们似乎对温度变化较不灵敏，因而可以去掉热电致冷器或光反馈机构。总的思想是在低成本环境下大量制造垂直腔面发射激光器。

先进研究计划局的 Husain 对这种评价也有同感，他指出，我们的资料表明，用户希望有高速、短距离光学互连，但他们不希望比铜线互连花更多代价。

摩托罗拉已允许用户对它的光学数据网络进行 6 个月评审。设计将立即完成，并将实施一个推出产品的计划。现在尚无万人知晓，垂直腔面发射激光器是否具有必要的长期可靠性，因为有关该激光器的资料尚很少。

Grula 说，我们正在追求垂直腔面发射激光器有 15～20 年寿命的目标（光输出降低 3dB）。至今外推的数据表明，垂直腔面发射激光器与边缘发射器件差不多。预计，最后结果可在 6 个月后获得。

（友 请供稿）