做科研，非一朝一夕
买器材，应速战速决
Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
Effect of multi-point defects on the bandgap and defect mode of two-dimensional photonic crystal

Heming Chen (陈鸣鸣), Sujuan Gao (高素娟), and Wei Peng (彭伟)

Department of Optical Information Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003

Bandgap and defect mode are important properties of two-dimensional (2D) photonic crystal, which determine the application of photonic crystal. At present, researchers have done a large amount of studying on point defect and line defect photonic crystal. In this paper, we introduce multi-point defects into 2D photonic crystal by removing medium rods (InGaAsP), and then simulate their bandgap and mode field using plane wave method (PWM). The simulation results are useful to design the multi-wavelength photonic crystal laser.

OCIS codes: 140.0140, 140.3410, 160.3710, 140.4780.

Photonic crystal is a kind of material with unique periodic structure, and this structure can form photonic bandgap that will prohibit the transmission of electromagnetic wave. This means that the electromagnetic wave in a certain frequency range cannot spread in this kind of photonic crystal[1-3]. But, if the periodicity is destroyed at some places, namely introducing defects into the periodic structure, defect modes with certain frequency will appear in the bandgap, and these defect modes can be well confined in or near the defects. This kind of characteristics of photonic crystal, such as photonic cavity and photonic waveguide is widely used[3-6].

At present, researchers have done a large amount of research to point defect and line defect photonic crystal[7-9]. In this paper, we introduce multi-point defects into two-dimensional (2D) photonic crystal by removing medium rods (InGaAsP). Figure 1(a) is the central defect structure. Figure 1(b) is the central defect combined with four symmetrical defects structure. In this paper, we have introduced the concept of supercell into the plane wave method (PWM). We analyze the influence of multi-point defects on transverse magnetic (TM) wave’s bandgap and defect mode, and then carry out the numerical simulation. The result indicates, the more the defects introduced, the wider the width of bandgap, and the frequency of bandgap will move to high frequency.

While calculating the bandgap of photonic crystal, we deal with the TM and transverse electric (TE) waves respectively; which propagate in photonic crystal and follow

\[
\nabla \times \frac{1}{\varepsilon(\vec{r})} \nabla \times \vec{H}(\vec{r}) = \left(\frac{\omega}{c} \right)^2 \vec{H}(\vec{r}),
\]

\[
\frac{1}{\varepsilon(\vec{r})} \nabla \times \nabla \times \vec{E}(\vec{r}) = \left(\frac{\omega}{c} \right)^2 \vec{E}(\vec{r}),
\]

where \(\varepsilon(\vec{r})\) represents periodic dielectric constant. Equation (1) describes the propagation equation of magnetic field, in other words, it is for the TE wave. Equation (2) describes the electric field, and it is for the TM wave. Because \(\varepsilon(\vec{r})\) is periodic function for ordinate \(\vec{r}\), \(\vec{E}(\vec{r})\) and \(\vec{H}(\vec{r})\) are the periodic function for ordinate \(\vec{r}\), too. They can be expanded in Fourier series according to Bloch’s theorem. This Fourier expansion leads to the following eigenfunctions[11],

\[
\sum_{\vec{k}} K(\vec{G} - \vec{G}_0) \left(\vec{k} + \vec{k} + \vec{G}_0 \right) H_{\vec{k} \vec{n}}(\vec{G}) = \left(\frac{\omega \mu_n}{c} \right)^2 H_{\vec{k} \vec{n}}(\vec{G}_0),
\]

\[
\sum_{\vec{k}} K(\vec{G} - \vec{G}_0)^2 E_{\vec{k} \vec{n}}(\vec{G}) = \left(\frac{\omega \mu_n}{c} \right)^2 E_{\vec{k} \vec{n}}(\vec{G}_0),
\]

where \(K(\vec{G})\) is the expansion coefficient of \(1/\varepsilon(\vec{r})\) in reciprocal lattice space, and \(\vec{G}\) donates the reciprocal lattice vector. \(\vec{k}\) is the wave vector in the first Brillouin zone. When we solve this two eigenfunctions using (PWM), first giving a wave vector \(\vec{k}\), then choosing the reciprocal lattice vector \(\{\vec{G}\}\), thus we can obtain a series eigenvalues for a given \(\vec{k}\). If calculating a series of \(\vec{k}\),

Fig. 1. 2D photonic crystal structure with central defect (a); and five defects (b).

Fig. 2. The bandgap structure of TM wave without defect.
we can obtain the eigenvalues for every \vec{k}, and then get
the bandgap structure. In this paper, the calculated zone
is 7×7 cells, and the number of plane wave is 1089.

While calculating are as follow, the dielectric constant
of the rod is 11.56, and the radius of rod is $r = 0.2a$, a is
the lattice constant. The bandgap structure of TM wave
before introducing the defect is shown as Fig. 2. We can
see that there is a wide bandgap in the normalized
frequency $0.2856-0.4207$, and the unit of the normalized
frequency is $\omega a/2\pi c$. In this bandgap, the light can not
spread in the photonic crystal.

Now we introduce point defect into the deal structure
by removing a central rod. The structure is shown as
Fig. 1(a). Through the calculation, we can get that the
boundary of bandgap is 0.2857-0.4280. Comparing with
the deal bandgap, the boundary frequency has moved to
high frequency and the width of bandgap has become
wider to some extent. The more important is that a
defect mode whose normalized frequency is 0.3793 has
appeared, and the field of this frequency can be well con-
fined in the central defect, as shown in Fig. 3.

Then we introduce a central defect and four symmetri-
cal defects (see Fig. 1(b)). We can see from the cal-
culation that the bandgap is 0.2839-0.4311 whose width
is wider than the above, and five defect modes have ap-
peared whose normalized frequencies are 0.3611, 0.3795,
0.3802(1), 0.3802(2), 0.3964 respectively, among them,
the modes 0.3802(1) and 0.3802(2) have different mode
symmetry, and they can be confined in or near the de-
fects too. The bandgap and field distribution is shown as
Fig. 4.

Comparing the two kinds of different defect structures,
we conclude that the defect frequency that exist in the
central defect still exists in the bandgap of five defects
structure, just the frequencies of defect modes have in-
creased, and this is the result of the interaction between
the center defect and four symmetrical defects. Because
the 2D photonic crystal with central defect can be used
for making cavity, but through introducing four symmet-
rical defects around the central defect, and some new
defect frequencies have appeared near the central fre-
quency. The interval of defect frequencies are very small,
which are 0.0184, 0.007, 0.0162, respectively. These data
are good reference to the mode stability of photonic crys-
tal cavity.

In this paper, we introduce multi-point defects into
2D photonic crystal, and then simulate their bandgap
and defect mode field using PWM. The result indicates,
the more the defects introduced, the wider the width of
bandgap, and the boundary frequency of bandgap will
move to high frequency. When four symmetrical de-
fects are introduced around the central defect structure,
some new defect frequencies with very small interval
have appeared near the central frequency. The fields of
this defect modes can be well confined in the defects.
The simulation results are useful to design the multi-
wavelength photonic crystal laser.
H. Chen's e-mail address is chhm@njupt.edu.cn.

References