做科研，非一朝一夕
买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
联系。研究激光热载体在该波长上的发光表明，它有一系列与其对应的吸收峰，其最强峰在于K14的发光峰范围内。应该指出，在同轴灯表面上存在高电容的激光热载体层，与接地的量子管壳体金属接触有助于同轴灯中氟偏光的方位对称性，可使激光元件在方位上受到均匀层体，并保持激光发射传播轴线方向不随时问改变。在脉冲重复率状态使用蒸汽激光热载体滤除了同轴灯的紫外光谱，可降低激光元件的热负载。

由图5可以看出，仅在同轴灯的慢反射层有足够厚度（在研究的样品中达到4mm）。并保证照明器有高反射率时，膜激光器才能得到创记录的效率。减小涂层的厚度导致的效率降低不小于20%。

因此，研究结果显示了制造具有同轴灯和大尺寸反射激光元件的量子管的可能性，它能工作于脉冲重复率状态，并在各种工作方式下有创记录的参数。

（白 光；晴 天铁稿）

低温单片环形 YAG : Nd³⁺ 激光器

目前对单片环形激光器性质的研究寄予极大关注[1-3]，但是，据我们所知，迄今尚未有在低温（77K）下运转该激光器的企图。然而，从实验分析，过渡到低温可保证极大的改善单片石榴石激光器的输出特性。

实验装置

在实验中研究了与文献[3]中描述类似的单片环形 YAG : Nd³⁺ 激光器，它放入低温恒温器（见插图），单片激光器有非平面环形谐振腔，其几何周长等于28mm。输出镜的透射系数为～0.5%。

单片激光器位于密封室内，抽真空至数Pₐ的压强，激光器固定在由液氮冷却的铜质热导体上，单片激光器的温度用与激光元件直接接触的热电偶测量。低温恒温器的结构，既允许在T = 77K，又允许直到300K更高的温度下对单片激光器的振荡特性进行稳态测量。这就保证了方便地在不同温度下对同一级数结构的实验器件的振荡特性进行比较测量。又可在温度在上述范围内缓慢变化时进行测量。温度的变化速率用调节加热器10的电流来改变。

装置中激光元件的激发用氩激光器（λ = 0.5145μm）实现，它的辐射通过恒温器窗口聚焦到激光元件上，辐射通过同一窗口射至光接收器上。在实验过程中于77～330K范围内研究了不同温度下的单片环形激光器的时间特性和光谱特性。

低温单片环形激光器

1—气体池，2—控制台，3—铜热导体，4—工作室，
5—工作室窗口，6—单片环形激光器，7—热电偶，
8—聚氨激光，9—聚焦透镜，10—加热器

主要结果

当单片激光器冷却时，不仅会出现由于谐振腔参数和增益谱线位移与温度有关所生的振荡波长变化，且会出现T ≈ 180K 时振
计指出，单片激光器光学谐振腔的不稳定性不仅依赖于温度的慢漂移（原则上可用温度自动保持来消除），且与热统计起伏有关，后者的幅度可这样估算。

设单片激光器是边长为 L 的立方体。这种物体的每一根振荡模对应的振荡能为 kT。显然，谐振腔长 L 热振荡的谱密度取决于上述元件本振荡的品质因数。特别是，对于长度起伏的基模以下式表示\(^{30}\):

$$
\left(\Delta \nu \right)^{1/2} \approx v_0^{-1} \left(\frac{3kT}{m} \right)^{1/2}
$$

式中，$v_0 \approx \pi c/L$；c —— 声速；m —— 物体质量。显然，降低温度会保证谐振腔热起伏水平的降低。

激活元件的冷却有助于工作区达到有效截面变大至 $5 \times 10^{-14} \text{cm}^2$，它能够降低单色泵浦时的振荡阈值。利用低温的附加优点是提高了激活元件的热导率，这可降低振荡时的热形变。由于上述因素是可以实现大功率振荡，并}。

结果的讨论

单片环形 $YAG: \text{Nd}^{3+}$ 激光器冷却时特性结果的改进和稳定可能与上述情况有关。单片石榴石激光器激活元件冷却至 $77K$ 伴随着增益谱线变窄至几分之一（由约 5 至 1.0cm^{-1}）\(^{31}\)。这有助于单频振荡频带宽度的扩展和噪声水平的降低。实际上，自调制频率的不稳定性和在环形激光器中低频噪声产生的原因之一是单频状态的破坏和弱模（其中包括低阈值模）的出现。有效地抑制这些模有助于增益谱线变窄。

单片激光器的冷却不仅易于达到激活元件的热稳定条件，并可导致单片声水平降低。估

（上接第 35 页）

MgO 层上的 BaTiO$_3$ 层，是 c 轴方向向外延生长。MgO 与 GaAs 品格不匹配度为 25.5%，尽管如此，材料间的结晶关系为 BaTiO$_3$ (001) //MgO (100) // GaAs (100)，面内取向为 BaTiO$_3$ [010] // MgO (001) // GaAs (001) 时，MgO-GaAs 界面上品格不匹配度为 0.7%，可视为 $1: 3$ 周期的二维超晶格匹配。另外，测量 BaTiO$_3$ 薄膜极化特性时，观测到显示强介质相形成的滞后环。综上结果，显然完全可制作强介质电光元件和半导体元件集成的单片器件。

（邹桂均；张荣康供稿）