学术期刊可以用微信做什么，快来看看！

微信自动应答服务平台
微时代 微革命

微服务
移动互联网时代的营销革命
简单快捷 • 高效互动 • 随时随地 • 广泛传播
A3 钢的 Ni-Cr-Si-B 激光合金化组织的研究

朱祖昌 张光钧 王维荣 吴文龙
(上海工程技术大学, 200051)

摘要: 本文报道 A3 钢喷涂 NiCrSiB 粉末后的激光重熔合金化处理的研究结果, 并用形核率和长大线速度与过冷度 ΔT 的关系对结果作了解释。

关键词: 激光合金化, A3 钢

Study on the microstructure of NiCrSiB laser alloying on A3 low-carbon steel

Zhu Zuchang, Zhang Guangjun, Wang Weirong, Xi Wenlong
(Shanghai University of Engineering Science, Shanghai)

Abstract: Investigation results of laser remelted alloying processing of A3 steel sprayed with NiCrSiB powder are reported, and explained based on the relationship among the nucleation rate, growth linear rate and undercooling ΔT.

Key words: laser alloying, A3 low-carbon steel

近二十多年来, 材料的表面改性技术发展很快。对一般常用结构和工具材料, 这种表面改性技术可分为改变表面化学成分和组织的处理以及不改变表面成分而只改变表面组织的处理两种。第一种处理中除了应用渗碳、渗氮、渗金属、多元共渗等传统的化学热处理和 PVD, CVD 等较新的处理工艺能达到改善耐磨、抗疲劳、耐蚀和耐热等性能之外, 经热喷涂和热喷涂后用激光束或电子束重熔的表面合金化的改性工艺也已经开始投入生产或正在从实验室走向工业应用。其中激光表面合金化的发展尤为引人注目。本文着重从金属学、相变角度阐述 A3 钢经热喷涂后热熔合金化组织形成的机制方面的问题, 探讨在激光快速加热和冷却条件下有关凝固和相变的规律。

一、试验材料和方法

本文以 A3 钢冷轧板材作为基体材料, 采用氧化-乙炔方法将市售 301 合金粉末热喷涂于基材表面, 其厚度约为 0.20～0.35 mm。301 合金粉末成分列于表 1 中。

激光重熔在 TK42 型 5 kW 连续 CO2 激光加工机上进行, 采用的激光处理工艺参数见表 2。激光合金化后的试样应用线切割方法割取。金相分析试样经镶嵌成 Φ30 mm 圆形后在 Pedemax-2 上进行磨制, 腐蚀剂为王水。在 Olympus 和 Neuphot 21 型金相显微镜上进行光
表 1 市售 S301 合金粉末化学组成

<table>
<thead>
<tr>
<th>名称</th>
<th>化 学 成 分 (Wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>301</td>
<td>0.4/0.8</td>
</tr>
</tbody>
</table>

表 2 激光合金化处理工艺参数

<table>
<thead>
<tr>
<th>工艺号</th>
<th>激光加热功率 (W)</th>
<th>激光扫描速度 V (mm/s)</th>
<th>光束直径 (mm)</th>
<th>功率密度 (W/cm²)</th>
<th>表面熔化时间 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3400</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1.08×10⁵</td>
<td></td>
</tr>
</tbody>
</table>

学显微组织检验; 在 S-520 带 EDAX 能谱分析的扫描电镜上进行 SEM 组织观察。X 光衍射分析试样为 15×2 mm 的狭条 (1), 15×15 mm 的方块 (4) 和搭接扫描的镶嵌试样 (3) 三种在 D/max-IIIA 型衍射仪上进行。试样表面洛氏硬度测定在 SA-200 上进行。试样剖取示意图见图 1。

图 1 金相、X 光衍射分析试样剖取部位示意图
(a)、(b)、1—15×2 狭条 (1); 3—金相试样; 3—搭接扫描镶嵌试样 (3);
4—15×15 方块试样 (4); (c)、激光合金化熔池示意图

二、结果和讨论

2.1 激光束扫描速度和熔池组织形态的关系

试样 A3 钢上喷涂 S301 粉的原始组织见图 2(a), 基体具有明显带状组织。经过激光重熔后卵断面低倍显微图示于图 2(b) 中, 熔池呈月牙形。其组织形态与激光处理工艺参数有关。典型熔池显微组织示于图 3(a)、(b), 为先共晶树枝晶 + 树枝晶间的共晶组织。工艺 1 的高倍组织见图 3(c)。十分明显, 在同样激光加热功率下随扫描速度 V 的增加, 激光重熔区的组织细化, 同时共晶组份的相对量有所增加。测定接近基体的熔化区内先共晶奥氏体的一次树枝晶干的宽度为 d, 数据列于表 3 中。d 与 V 之间的关系示于图 4, 符合下式关系:
图 2
(a) 热喷涂 301 粉末后的 A3 钢试样原始组织图, OM, 400×, 王水腐蚀; (b) 热喷涂 301 粉末后经激光重熔后横断面的低倍形貌, OM, 100×, 王水腐蚀。

图 3
(a) 激光合金化工艺 1 试样的组织图(SEM), 500×, 王水腐蚀; (b) 激光合金化工艺 4 试样的组织图(SEM), 500×, 王水腐蚀; (c) 激光合金化工艺 1 试样的组织图(SEM), 2000×, 王水腐蚀

\[
\frac{1}{d^2} \approx 2.59 - 0.056 V
\]

在保证得到完整熔池的临界扫描速度 \(V_c\) 以下, 即 \(V < V_c\) 时, 随 \(V\) 的增加, 工件表面受激光照射的时间缩短, 亦即其冷却速度增加。上式关系说明: 随着冷速增加, \(d\) 值变小。

激光重熔区的轻荷表面热硬性值 HR30N 与扫描速度 \(V\) 的关系示于图 5 中。显然, 随着 \(V\) 的增加, 冷却速度增加, 组织细化, 硬度值有所提高。

2.2 熔池/基体的界面形态
从图 3(a), (b) 的 SEM 照片中可以看出, 在熔池

<table>
<thead>
<tr>
<th>表 3</th>
<th>(d, d^{1/2}) 与 (V) 的关系</th>
</tr>
</thead>
<tbody>
<tr>
<td>工艺主要参数</td>
<td>(d(\mu m))</td>
</tr>
<tr>
<td>3400 W, 5 mm/s</td>
<td>5.64</td>
</tr>
<tr>
<td>10</td>
<td>3.82</td>
</tr>
<tr>
<td>15</td>
<td>2.90</td>
</tr>
<tr>
<td>20</td>
<td>2.32</td>
</tr>
</tbody>
</table>
基体界面上存在一条沿熔池的灰黑色界面层。它在熔池横向断面上沿月牙形熔池边缘分布，在熔池纵向断面上沿熔池/基体界面基本上呈直线形分布。该界面层有的较为完整，有的不完整。在 SEM 照片上界面层呈灰黑色，而光镜照片上呈白亮色（见图 6）。界面层沿横向断面具有一定的宽度，约为 8～8 μm，不完整时 h→0。扫描速度 V 增加时，h 值减小，反之则增大。该界面层实际上是先共晶奥氏体相，它在以后快速冷却中能变为马氏体组织（图 6）。

2.3 组织形成机制

熔池组织的形成是由激光加热熔化和结晶凝固条件共同决定的。

2.3.1 熔池中合金元素的分布。尽管激光加热熔池中存在对流[22]，但在靠近基体的部分，搅拌对流作用极弱，溶质原子还是主要靠扩散来进行均匀化。这样就导致愈近熔池/基体界面，合金元素含量愈低，而且激光扫描速度 V 愈大，该处的合金元素量更低。我们在 S-520 扫描电镜上应用 EDA X 能谱分析对 P，L，R 试样结晶和相变后的组织成分作了测量，结果示于表 4 中。应该说明的是这些测量值只反映成分上的相对差异，而不是实际确定值。这结果与我们以前电子探针分析结果和 Mordike 等的试验结果有近似之处。这实际上是要容易理解的。在液态金属中，一般金属原子的自扩散系数在 5×10^{-5} cm^2/s 数量级[23,27]。激光扫描速度以 20mm/s 为例，金属表面每点被辐照时间为 0.1 秒，在这段时间间隔中金属原子扩散的距离约为 0.01 mm (10 μm)。我们把熔池中与基体接近部分的某种熔质原子分布的示意图如图 7(a) 表示。

熔池中先共晶相和共晶相的成分差异是在结晶前后形成的，主要差别在于 Cr 的含量。此外还有 Cr 和 Al 的含量差异。

我们对三种 X 光衍射分析试样所作的分析结果，除存在奥氏体和马氏体外，主要结果示
表 4 激光熔池中合金元素含量测定值

<table>
<thead>
<tr>
<th>试样号</th>
<th>工艺参数</th>
<th>近界面</th>
<th>界面层</th>
<th>心部先共晶相**</th>
<th>心部共晶相***</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3400 W, 5 mm/s</td>
<td>100% Fe</td>
<td>Ni</td>
<td>12.88</td>
<td>12.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr</td>
<td>2.06</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si</td>
<td>1.65</td>
<td>1.89</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>100% Fe</td>
<td>Ni</td>
<td>7.32</td>
<td>14.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr</td>
<td>1.17</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si</td>
<td>1.90</td>
<td>2.72</td>
</tr>
<tr>
<td>R</td>
<td>20</td>
<td>100% Fe</td>
<td>Ni</td>
<td>3.27</td>
<td>14.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr</td>
<td>1.62</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Si</td>
<td>~0.5</td>
<td>1.84</td>
</tr>
</tbody>
</table>

* 表中未计入 C 和 B 的含量
** 心部共晶相和共晶相的合金成分由于取的部位不相同, 直接比较即难相互比较。

表 5 X 光衍射分析结果

<table>
<thead>
<tr>
<th>试样号</th>
<th>尺寸 (mm)</th>
<th>处理工艺参数</th>
<th>化合物相</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15×2×15 (高)</td>
<td>3400 W, 15 mm/s, 单道扫描</td>
<td>Fe₂B</td>
</tr>
<tr>
<td>4</td>
<td>15×15×15 (高)</td>
<td>3400 W, 15 mm/s, 接头</td>
<td>Fe₂B</td>
</tr>
<tr>
<td>3</td>
<td>φ30 镀银</td>
<td>3400 W, 15 mm/s, 接头</td>
<td>Cr₂B, Cr₃C₃</td>
</tr>
</tbody>
</table>

于表 5 中。其中狭条试样 (a) 和方块试样 (b) 的激光重熔表面略经磨制后作衍射分析, 搭接镍台试样 (c) 以横断面进行衍射分析。由表可见, 由于衍射部位和原方试样处理工艺的不同所出现的化合物相也不相同, 这些化合物相存在于共晶组分中。

2.3.2. 完全熔化区和准熔化区。激光束加热金属形成完整熔池时, 由于热量的传递不等造成温度分布的差异。应该指出, 在基体材料中构成池的条件是

\[T_0 > T_m + ΔT_b \]

式中 \(T_0 \) 为熔池区的实际温度, \(T_m \) 为基体材料的平衡熔点, \(ΔT_b \) 为过热度。在熔池/基体交界处的温度 \(T_m \) 为

\[T_m = T_m + ΔT_b \]

在一般情况下, 交界面处的过热度 \(ΔT_b = ΔT_b \)。

已如前述, 激光加热熔池中存在对流, 该区金属原子的迁移距离大, 构成完全熔化区。在接近基体的交界部位, 对流搅拌作用很弱, 金属原子扩散距离短, 大部分原子基本上仍保留在原来固态晶体中的位置, 我们称这样的部位为“准熔化层”。准熔化层与固态晶体所不同的事(2)：(1) 原子的平均间距相大; (2) 原子的配位数比固体中的 (FCC 中为 12) 小, 通常在 8~11 范围内。而且愈近基体, 这两种差别更小。

3.3.3. 准熔化层的凝固过程。准熔化层中熔质原子浓度的分布如图 7(a)示, 其相应凝固点如图 (b) 图变化。众所周知, 激光自激熔火中冷却速度约为 \(10^4 ~ 10^5 \) ℃/s 或更高, 即熔池中存在很大的正温度梯度 \(G \)。当界面温度下降至界面合金
的凝固点以下达到一定过冷度 ΔT_c (图 7(c)) 时，该处首先开始结晶。因为位向关系，此处结晶一般不另行形核，而是以基体晶粒为核心进行外延生长。由于不存在成分过冷，生长的方式将是平面状的推移。这样，准熔化层的结晶过程实际上成了原来基体在熔化前的奥氏体晶粒的复原过程。此外，位向互相接近的晶粒还可发生并长，故其晶界不一定与基体中的奥氏体的晶界完全相连，而长成如图 8 所示的晶粒状态。

这一准熔化层的厚度 h 显然受到扫描速度 V 的影响。V 愈小，传递给基体的热量愈多，h 值就会愈大。在一定的 V 下，h 值可能趋向于零，得到不完整的界面白层。

3.3.4. 完全熔化区的结晶过程。组织形貌由形核率 \dot{N}、长大线速度 v 和成分过冷程度决定。

熔池自激冷时，结晶前沿溶质原子堆积较多，形成成分过冷，过冷程度与 V 有关（图 9）。此外，随过冷度增加，\dot{N} 迅速增加，v 呈直线增加。（但增加速率低于前者），这样势必细化组织，减小一次树枝晶干宽度 d，胞状-树枝状定向分布明显，同时由于更加偏离平衡冷却情况，所以得到更多的伪共晶组份。

2.3.5. 先共晶奥氏体相的马氏体转变

先共晶奥氏体在快速自激淬火中转变为马氏体。熔池中由于合金元素量的不同，得到的马氏体形态有所不同。一般在近基体的熔池处为板条马氏体（图 3(c)、6）；在熔池内部则出现片状马氏体组织（图 10）。

值得注意的是在熔池/基体边界部位板条马氏体的位向与 A3 星基体的板条马氏体的相一致，如图 6 示。其工艺参数为 3400 W，5 mm/s，激光快速冷却下，A3 星基体首先发生马氏体转变得到马氏体组织。
当界面上层的 M_1 点到达后，也立即开始马氏体转变，由于该处和基体两部分在成分和位向上的差异不甚显著，此处发生的转变以附于基体马氏体板条长大的方式进行。

由此得出以下结论：
1. 激光加热熔化区内近基体部位的合金元素分布并不均匀，一般 Ni, Cr 和 Si 等溶质元素的含量较低，而且随激光扫描速度增加，溶质元素的含量更低。
2. 焊接/基体交界区存在有一定宽度的晶粒较粗的界面层，其形成和组织特征由激光快速加热熔化与结晶凝固条件决定。界面层的宽度和完整性受激光处理工艺参数影响。
3. 激光熔池的组织形态决定于形核率、长大线速度和成分过冷程度与扫描速度的关系。
4. 在一定激光加热功率和 $V < V_c$ 下，随 V 增加，熔池的凝固组织细化，晶粒-树枝状定向发展明显，交界区界面层宽度减小，凝固层的表面洛氏硬度值提高。

感谢上海交通大学方连华高级工程师、杨于兴副教授和胡延祥教授的大力帮助。

参考文献
1. C. W. Draper et al., International Metal Reviews, 30(2), 85(1985)
4. 胡延祥，铁科院，金属学，上海科学技术出版社 1980, 168.

制作集成半导体激光器光栅的新技术——激光诱导腐蚀蚀法

通常的法布里-珀罗腔激光器不能满足与调制器、开关、波导等功能的光电器件集成在同一芯片上的要求，而利用激光折射作用的分布反射（DBR）激光器和分布布拉格反射（DBR）激光器则是单片光电集成的理想光源。但由于光栅的制作难度很大，因此精细光栅的研制是单片集成半导体激光器的关键技术之一。

集成半导体激光器的光栅通常是在磷化铟单晶片上涂以高分辨率正性光刻胶，用激光全息曝光，经以化学腐蚀法制作的。这种方法工艺过程繁杂，光栅表面质量受光刻胶的影响很大，不但容易出现断条、边缘不整齐等毛病，而且容易污染样品的光栅表面，影响其上的外延生长。激光诱导腐蚀蚀法工艺简单，不用光刻胶作掩膜，而是在激光诱导下利用相干明暗条纹间的腐蚀速率差把光栅直接刻蚀在样品上。这种方法不仅克服了上述缺点，甚至连晶体缺陷处的不均匀腐蚀也未观察到，从而能提供高质量的光栅表面。

激光诱导腐蚀蚀装置采用美国频谱物理公司的氮离子激光器，其激光经空间滤波器和扩束镜后通过半透半反射元件相等相的束光。再经过一对平面全反射反射后，两相干光束通过石英直角棱镜进入腐蚀室照射在磷化铟样品上。精细调节两相干光束的夹角可以得到所需要的光栅空间周期。激光在腐蚀过程中具 有 双重作用，一方面由激光的相干性决定了样品的光栅腐蚀图形，另一方面由激光的热效应增强了腐蚀过程。

腐蚀室的优化设计是非常重要的。要根据激光的强度、腐蚀液的吸收系数、腐蚀液的体积合理确定样品表面上腐蚀液的厚度。为了避免激光诱导腐蚀蚀期间腐蚀性欲的降低，需要增大腐蚀液的体积；而考虑到腐蚀液对光的吸收，要增加样品表面的激光强度则要减小样品表面的腐蚀液厚度。激光诱导腐蚀蚀过程中必须排除由腐蚀液内气泡和外部干扰所引起的腐蚀液表面的波动，防止可能发生的光的散射。

我们在激光诱导腐蚀蚀中对 n-InP 采用体积比为 1:100 的溴甲醇腐蚀液，激光波长为 457.9 nm，光功率密度为 10 W/cm²，腐蚀时间为 3 min。利用优化设计的激光诱导腐蚀蚀装置，研制出集成半导体激光器的一级光栅，它比用激光全息棱镜曝光法和化学腐蚀技术制作的一级光栅表面质量有明显的提高。由扫描电镜看出光栅表面条纹均匀、连续、平直，其横断面呈光滑正弦形。

（清华大学电子工程系 孙成文 何淑珍 唐宏 薛保兴 1990 年 3 月 20 日收稿）