Improved large-mode-area Bragg fiber

Peiguang Yan (闫培光)1, Jian Zhao (赵健)1, Shuangchen Ruan (阮双琴)1,*, Junqing Zhao (赵俊清)1, Geguo Du (杜戈果)1, Huifeng Wei (韦会峰)2, Xiang Li (李相)3, and Shengping Chen (陈胜平)2

1College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2Yangtze Optical Fiber and Cable Company Ltd Research Center, Wuhan 430073, China
3College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China

*Corresponding author: yanpg@szu.edu.cn

A novel large-mode-area Bragg fiber (BF) is proposed for selectively suppressing the amplified spontaneous emission (ASE) of Yb. Confinement loss can be effectively lowered by adding a layer of F-doped glass near the core of this fiber. The BF can achieve effective suppression of ASE of Yb when the bend radius is 0.15 m at wavelength lower than 1.13 µm in theory, and eliminate LP11 mode in mode competition in wavelength range of 1.15–1.2 µm.

OCIS codes: 060.2270, 060.2280, 060.2430, 060.5295, 140.3510.

doi: 10.3788/COL201109.060603.

A novel large-mode-area Bragg fiber (BF) is proposed for selectively suppressing the amplified spontaneous emission (ASE) of Yb. Confinement loss can be effectively lowered by adding a layer of F-doped glass near the core of this fiber. The BF can achieve effective suppression of ASE of Yb when the bend radius is 0.15 m at wavelength lower than 1.13 µm in theory, and eliminate LP11 mode in mode competition in wavelength range of 1.15–1.2 µm.

Two-dimensional (2D) solid-core photonic bandgap fibers (SC-PBGFs) have attracted much attention over the past few years because of their unusual dispersion and modal properties [1–4]. Moreover, such fibers can be used as wavelength-dependent distributed filters owing to the band gap principle. By filtering the amplified spontaneous emission (ASE) of Yb in the high-gain region (∼1.03–1.11 µm), the frequency-shifted fiber laser (FSFL) can achieve high output power (∼0.98 or 1.15 µm) [5–9], which provides a new means of blue or yellow light generation by direct frequency-doubling FSFL. In 2009, Shirakawa et al. obtained 30-W laser at a wavelength of 1178 nm with a double-clad Yb-doped SC-PBGF, and pointed out two main problems in such fibers [9]. Firstly, the Ge-doped lattice in the clad absorbed an amount of pump power. Second, with the Yb-doped SC-PBGF, it was difficult to achieve large-mode-area (LMA) design. Both factors impede further improvement of the output power of FSFL.

Bragg fibers (BFs) consist of a core with low refractive index, surrounded by alternating layers with high and low refractive indices [10]. Light confinement in the core is due to the coherent Fresnel reflection from the boundaries between the high-index and low-index layers. BFs are promising candidates for designing LMA structures owing to their high bend immunity [11]. Continuous wave and mode-locking oscillations have recently been demonstrated around ∼1.06 µm in the Yb-doped BF lasers [12,13]. Thus, the LMA BF with a core diameter of 30 µm is a candidate for high-power FSFL, and is compatible with common Yb-doped active fiber and optical devices. In this study, we propose a novel bend-resistant LMA BF for filtering the high-gain region of Yb ASE. The low-index F-doped layer added near the core can enhance the light confinement. In theory, the BF can effectively suppress the ASE of Yb at wavelength lower than 1.13 µm at a bend radius of 0.15 m. The large difference in confinement loss (CL) between LP10 and LP11 modes is beneficial for achieving single-mode oscillation in laser cavity.

The cross section and refractive index profiles of the improved BF are shown in Fig. 1. Unlike common BFs, this BF has a thin F-doped layer added adjacent to the fiber core to decrease the bending loss. The fiber core has a diameter (Dco) of 30 µm, and its refractive index difference is ∆nco=3×10−4. By adding a thin F-doped layer with a thickness of 3 µm and its refractive index difference is ∆nF=4×10−3. Three coaxial high-index Ge-doped rings compose the Bragg mirror. The thickness and pitch of these rings are 1.5 and 12 µm, respectively. Each ring has an index difference of ∆nGe=4.5×10−3 higher than that of pure silica.

Fig. 1. (a) Cross section and (b) refractive index profiles of improved BF.

1671-7694/2011/060603(3) 060603-1 © 2011 Chinese Optics Letters
Fig. 2. Calculated CL curves of improved and common BFs.

Fig. 3. Calculated CL curves of LP_{01} and LP_{11} modes of the improved BF. The inset is LP_{11} mode distribution at 1.13 \mu m.

Fig. 4. Dependence of CLs on bend radius.

Fig. 5. LP_{01} mode distribution at (a) 1.13 and (b) 1.2 \mu m.

Fig. 6. CLs of LP_{01} and LP_{11} modes at \(R_c = 0.15 \) m.
layer can lower the CL. Our calculation shows that the CL is very low in the wavelength range of $1.15-1.2 \mu m$ at $R_c = 0.15 \text{ m}$. The novel fiber design is of great significance for the high-power FSFL and the highly efficient yellow laser light generation.

This work was supported by the National Natural Science Foundation of China (Nos. 61007054 and 10904173), the Natural Science Foundation of Guangdong Province (No. 9451806001002428), and the Science Technology Program of Shenzhen City (No. 200718).

References