做科研，非一朝一夕

买器材，应速战速决

Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
High-power diode-end-pumped Tm:YAP and Tm:YLF slab lasers

Xiaojin Cheng (程小劲)1,∗, Jianqiu Xu (徐剑秋)2, Yin Hang (杭 宾)1, Guangjun Zhao (赵广军)1, and Shuaiyi Zhang (张帅一)1

1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2Department of Physics, Shanghai Jiaotong University, Shanghai 200240, China

∗Corresponding author: xjcheng@siom.ac.cn

Received February 23, 2011; accepted April 14, 2011; posted online July 11, 2011

High-power and high-energy 2-μm lasers have great potential applications in medicine, military, and science. Firstly, as eye-safe light sources, 2-μm lasers have been widely used in surgery and dentistry. Secondly, 2-μm lasers have huge application prospects in the fields of remote sensing and optical communications, especially in coherent Doppler light detection and ranging (LIDAR). Thirdly, 2-μm solid-state lasers with high peak powers are effective pump sources of 3-5-μm optical parametric oscillators (OPOs)[1-4].

Because of the long fluorescence lifetime, high quantum efficiency introduced by the cross-relaxation mechanism, and the ability to be pumped directly by commercial laser diodes (LDs), Tm-doped solid-state lasers, such as Tm:YAG, Tm:YLF, Tm:LiLuF\textsubscript{4}, and Tm:KLu (WO\textsubscript{4})\textsubscript{2}, have been studied and reported recently[5-10]. Except for their similar thermal and mechanical properties as that of Tm:YAG crystal, Tm:YAP and Tm:YLF are natural birefringence crystals that can excite polarized light without external polarizer. Furthermore, high-power Tm:YAP and Tm:YLF lasers are efficient pump sources for Ho-doped materials. Ho-doped materials are more suitable for energy storage than Tm-doped materials because of their larger emission cross. However, Ho-doped materials cannot be efficiently diode-pumped directly commercially[11,12]. Thus, detailed research on how to obtain higher output power with high efficiency is still needed.

In this letter, we present Tm:YLF and Tm:YAP slab-structure lasers that are end-pumped by two diodes from both ends. The maximum output powers of 72 and 50.2 W are obtained from Tm:YAP and Tm:YLF, respectively, while the pump power is 220 W, corresponding to the slope efficiencies of 37.9% and 26.6%, respectively.

Diode-end-pumped continuous-wave (CW) Tm:YAP and Tm:YLF slab lasers are demonstrated. The a-cut Tm:YAP and Tm:YLF slabs with doping concentrations of 4 at.-% and 3.5 at.-%, respectively, are pumped by fast-axis collimated laser diodes at room temperature. The maximum CW output powers of 72 and 50.2 W are obtained from Tm:YAP and Tm:YLF, respectively, while the pump power is 220 W, corresponding to the slope efficiencies of 37.9% and 26.6%, respectively.

Table 1. Parameters Used in Laser Experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tm:YAP</th>
<th>Tm:YLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doping Concentration (at.-%)</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>Dimension (mm)</td>
<td>1.5×8×12</td>
<td>1×6×12</td>
</tr>
<tr>
<td>Central Wavelength of Pump LDs</td>
<td>791.5 nm, 24 °C</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Unpolarized absorption spectra of the a-cut 4 at.-% Tm:YAP and a-cut at.-3.5% Tm:YLF crystals (780–820 nm).
Fig. 2. Scheme of the Tm:YLF and Tm:YAP slab lasers. L1–L2: lenses.

Fig. 3. Output power of single-end-pumped (a) Tm:YAP and (b) Tm:YLF.

the maximum output power is 44.2 W, while the transmission of the output coupler is 15%, corresponding to a slope efficiency of 45.5%. For Tm:YLF, the maximum output power is 30.54 W, while the transmission of the output coupler is 20% and the radius of curvature is 400 mm, corresponding to a slope efficiency of 31.3%. When the two diodes are used to pump the crystal from both ends, the maximum output powers are 72 and 50.5 W, corresponding to slope efficiencies of 37.9% and 26.6%, respectively (as shown in Fig. 4).

The result shows that Tm:YAP with a dope concentration of 4 at.-% has higher slope efficiency than the 3.5 at.-% Tm:YLF with the same pump power. Figure 5 shows the absorption spectra from 1 900 to 2 000 nm. The reabsorption coefficient of the 3.5 at.-% Tm:YLF is about 0.5 cm$^{-1}$ at 1 909 nm, which is higher than the coefficient for 4 at.-% Tm:YAP (about 0.04 cm$^{-1}$ at 1 993 nm). A more serious reabsorption decreases the slope efficiency of Tm:YLF.

Figure 6 shows the output laser spectra of Tm: YAP and Tm:YLF. With the output coupling of 15% and doping concentration of 4 at.-%, the central laser wavelength of the a-cut Tm:YAP is 1 993 nm. For the a-cut 3.5 at.-% Tm:YLF, the central wavelength is 1 909 nm.

In conclusion, we demonstrate high-power CW diode-end pumped Tm:YAP and Tm:YLF slab lasers at room temperature. When the pump power is 220 W, the maximum output powers are 72 and 50.2 W with slope efficiencies of 37.9% and 26.6% for the Tm:YAP and Tm:YLF slab lasers, respectively. The experimental results show that Tm:YAP and Tm:YLF crystals with slab structure are effective configurations for high-power 2-μm lasers at room temperature.

This work was supported by the Natural Science Foundation of Shanghai, China (No. 09ZR135100) and the National Natural Science Foundation of China (No. 61008020).

References