Equivalent circuit analysis of terahertz metamaterial filters

(Invited Paper)

Xueqian Zhang (张学迁)¹, Quan Li (李 泉)¹, Wei Cao (曹 伟)², Weisheng Yue (岳伟生)³,
Jianqiang Gu (谷建强)², Zhen Tian (田 淼)², Jiaguang Han (韩家广)¹,*
and Weili Zhang (张伟力)¹,²

¹Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering,
and Key Laboratory of Opto-electronics Information Technology,
Ministry of Education, Tianjin University, Tianjin 300072, China
²School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,
Oklahoma 74078, USA
³Advanced Nanofabrication, Imaging and Characterization Core Facilities, King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
*Corresponding author: jiaghan@tju.edu.cn

Received July 1, 2011; accepted August 8, 2011; posted online September 30, 2011

An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered.

OCIS codes: 160.3918, 300.6495.
doi: 10.3788/COL201109.110012.

Metamaterials have been demonstrated over a significant portion of the electromagnetic spectra from radio, microwave, and terahertz (THz) to the optical regimes. The unique properties of metamaterials are not attainable with naturally occurring materials[1]. Thus, enormous applications in devices and techniques, such as superlens, cloaking, antenna, and sub-wavelength photolithography are enabled[2–5]. The capability of metamaterials has been broadly expanded because they allow precise control of the electromagnetic responses. The appreciation of electromagnetic response control through metamaterial structures provides unique benefits in the design of versatile devices, including filters, modulators, and switchable components.

However, geometry strongly influences the electromagnetic performance of metamaterials. Consequently, it is necessary to formulate some models that can accurately predict their behaviors have been formulated. Several models have been put forward, such as the LC resonant model[6], TL–RLC model[7], Fano model[8], and dipole resonance model[9]. In most of previous investigations, however, the models are limited because it is difficult to provide a specific value for each circuit parameter needed to fabricate a given component. This is particularly true for a complex design. In this letter, an equivalent circuit model is proposed. The model combines an LMC resonator with the existing analytic expressions for the capacitive and inductive elements. The analytical model agrees well with the experimental measurements and the full-wave simulations for various designs.

Because of their wide applications in sensing, spectroscopy, imaging, security, and so forth, filters have become one of the most important devices. Based on the most commonly used U-shaped resonators[10,11], a metamaterial filter design is chosen, i.e., a merged double-U (MDU) split ring resonator (SRR) structure with normal incident electromagnetic field orientations, as shown in Fig. 1. The proposed structure offers relevant opportunities and considerable flexibilities to control the electromagnetic response over a broad THz frequency range.

Two exactly consistent U-shape resonators are merged oppositely to form a “MDU molecule.” The inset of Fig. 1 shows the diagram of a unit cell of MDU, where the U-shape resonators have fixed geometric parameters: U leg length \(l = 45 \mu m\), lateral width \(d = 40 \mu m\), and line width \(w = 5 \mu m\), but with various overlapping distances between the two Us. The overlapping distances...
between the two Us are quantified by the length \(h \), where \(h = 0 \) occurs when the fused Us begin to separate. The MDU resonators with 200-nm-thick Al metal structures on a square lattice of period \(P = 100 \mu m \) are fabricated on a 640-\(\mu m \)-thick silicon substrate by conventional photolithography processing. This is shown in Fig. 1. To characterize experimentally the properties of the MDU resonators, an 8-F THz time-domain spectroscopy (TDS) transmission system is employed\(^{[12]}\). By arranging the parabolic mirrors in a confocal geometry, the excellent beam is focused to a frequency-independent beam waist. The beam waist is approximately 3.5 mm at the center between the transmitter and the receiver where we locate the reference and the sample. The respective transmission spectra \(E_{\text{in}}(\omega) \) and \(E_{\text{out}}(\omega) \) of the reference and sample are both experimentally characterized. The reference is a blank Si slab identical to the sample’s substrate. The respective transmission \(|E_{\text{out}}(\omega)/E_{\text{in}}(\omega)| \) is subsequently calculated with respect to \(\omega \), the angular frequency.

Figure 2(a) presents the microscopic images of the measured structures for the different values of overlap distance \(h \in [7, 19] \mu m \). The measured values \(t(\omega) \), \(\omega/2\pi \in [0.4, 1.3] \) THz, reveal a sharp dip in the amplitude transmission, indicating the characteristic of a band-stop filter. The resonance dip blueshifts gradually from 0.59 to 0.87 THz as \(h \) is increased from 7 to 19 \(\mu m \), as shown in Fig. 2(b). The transmission dip remains \(~0.15 \) during this increase in \(h \), with \(Q \)-factors of 7.70 for \(h = 7 \mu m \) and 6.81 for \(h = 19 \mu m \).

The measured spectral response characteristics of the chosen structures are further supported by a full wave numerical simulation using CST Microwave Studio. The unit cell shown in Fig. 1 is used in the simulations under periodic boundary conditions. The silicon substrate is modeled as a lossless dielectric material with relative permittivity of \(\varepsilon_{\text{Si}} = 11.78 \), while Al is simulated with a conductivity of \(\sigma_{\text{Al}} = 3.72 \times 10^7 \) S/m. The simulated spectra of \(t(\omega) \) in Fig. 2(c) reveal good agreement with the experimental data in Fig. 2(b).

Figure 3 illustrates the simulated distributions of the electric field and surface current density in the unit cell for different values of \(h \) at the corresponding resonance frequencies. The electric field is concentrated around the ends of the four legs in each case (shown in the second line). The surface current density (shown in the first line), (i) is symmetric in relation to the axis parallel to and equidistant from the two cross-bars, (ii) is antisymmetric in relation to the central axis normal to the cross-bars, and (iii) is concentrated along the two cross-bars. Accordingly, if an equivalent-circuit model for the merged-U structure should be formulated, each bar must have self-inductance, and some bar pairs must have mutual inductance. However, any inductances for the central bars that are between and orthogonal to the two cross-bars can be ignored because of antisymmetry.

Based on the analysis above, an equivalent LMC circuit model is established for the unit cell. This is shown in Fig. 4(a). \(L_1 \) is the self-inductance of each leg, and \(L_2 \) is the self-inductance of each cross-bar. \(M_1 \) and \(C_1 \) are the mutual inductance and capacitance between the oppositely facing legs, respectively. \(M_2 \) is the mutual inductance between the two cross-bars, and \(C_2 \) is the capacitance between the central bars that are orthogonal to the cross-bars.

To apply the LMC circuit model, it is necessary to calculate all equivalent circuit parameters. Using the line capacitance theory\(^{[13]}\), we obtain

\[
C_1 = a_1 \varepsilon_0 \varepsilon_{\text{eff}}(\ell - 2h) \frac{K(k_0^{'})}{K(k_0)} \tag{1}
\]

\[
C_2 = a_2 \varepsilon_0 \varepsilon_{\text{eff}}(h - w) \frac{K(k_0^{'})}{K(k_0)} \tag{2}
\]

where \(a_1 \) and \(a_2 \) are the unknown coefficients; \(K(k_0) \) is the complete elliptic integral of the first kind with \(k_0 = d/(d + 2w) \) and \(k_0^{'} = \sqrt{1 - k_0^2} \); \(\varepsilon_0 \) is the permittivity of free space, and \(\varepsilon_{\text{eff}} = f \varepsilon_{\text{Si}} + (1 - f) \) is the effective relative permittivity that accounts for the contributions of both air and the substrate to the capacitance, where \(f \in (0, 1) \) is a factor representing the effect of the substrate. The members of the set \(\{a_1, a_2, f\} \) can be fixed by fitting them against the three experimental data sets.

The self-inductance of each current-carrying surface is calculated according to the Bueno theory\(^{[14]}\):

\[
\Lambda(\ell_0) = \frac{\mu_0 \ell_0}{4\pi} \left[2 \sinh^{-1} \left(\frac{\ell_0}{w} \right) + (1 + n) \left(\frac{\ell_0}{w} \right) \sinh^{-1} \left(\frac{w}{\ell_0} \right) \right. \\
- \frac{(3 - n)}{3} \left(\frac{w^2 + \ell_0^2)^{3/2}}{\ell_0 w^2} + (1 - n) \frac{\ell_0}{w^2} (w^2 + \ell_0^2)^{1/2} \right. \\
+ \frac{2n}{3} \left(\frac{\ell_0}{w} \right)^2 + \frac{3 - n}{3} \left(\frac{w}{\ell_0} \right)^2 \left. \right], \tag{3}
\]

where \(\ell_0 \) is the length of the bar, \(\mu_0 \) is the permeability of free space, and \(n \) is an integer number. In Eq. (3), the Neumann model is used with \(n = 1 \). Thus, Eq. (3) is simplified to:
M for our unit cell, densities pointed in the same direction can be expressed as:

\[d, \Xi(\ell) = \frac{\mu_0 \ell_0}{4\pi} \left\{ 2 \sinh^{-1} \left(\frac{\ell_0}{w} \right) + 2 \left(\frac{\ell_0}{w} \right) \sinh^{-1} \left(\frac{w}{\ell_0} \right) \right. \]

\[+ \left. \frac{2}{3} \left[\left(\frac{\ell_0}{w} \right)^2 + \frac{\ell_0}{w} \left(\frac{w^2 + \ell_0^2}{\ell_0 w^2} \right)^{1/2} \right] \right\}. \tag{4} \]

Specifically, the self-inductances in our structures can be calculated as: \(L_1 = \Lambda(\ell - 2h) \) and \(L_2 = \Lambda(d) \). In addition, the mutual inductance between the two parallel bars of length \(\ell_0 \), separated by distance \(h_0 \), and with current densities pointed in the same direction can be expressed as \cite{14}:

\[\Xi(\ell_0, h_0) = \frac{\mu_0}{4\pi} \left\{ 2 \ell_0 \sinh^{-1} \left(\frac{\ell_0}{h_0} \right) + 2 \left[h_0 - \left(h_0^2 + \ell_0^2 \right)^{1/2} \right] \right\}. \tag{5} \]

For our unit cell, \(M_1 = -\Xi(\ell - 2h, d - w) \) and \(M_2 = \Xi(d, 2h - w) \). The negative sign in \(M_1 \) is a result of the opposite direction of the surface current density. Thus, the total impedance of the half circuit is given as

\[Z_m = \left[\frac{1}{j\omega C_1} + j\omega(2L_1 + 2M_1) \right] + \frac{1}{j\omega C_2} + j\omega(L_2 + M_2). \tag{6} \]

The resonance frequency can be extracted through the relation:

\[\text{Im}(Z_m) = 0. \tag{7} \]

The solid line in Fig. 4(b) represents the analytically predicted resonance frequency by the LMC model with \(\{ a_1 = 0.057, a_2 = 0.107, f = 0.54 \} \), which is in good agreement with the experimental results. The calculations indicate that the increase of \(h \) results in the decrease of \(C_1, L_1, \) and \(M_2 \) as well as the increase of \(C_2 \) and \(M_1 \). However, \(L_2 \) is independent of \(h \) (Table 1). Therefore, the presented MDU structure provides a good choice for terahertz bandstop filters, and the complementary design of the MDU structure can serve as a good terahertz bandpass filter according to the Babinet’s principle \cite{15}.

To verify the effectiveness of the LMC circuit model, we changed the other parameters of the MDU structure with fixed \(h \). Figure 5(a) shows the microscopic images of the measured structures with fixed values, i.e., \(h = 42 \mu m \) and \(d = 40 \mu m \) but with various values of \(U \) leg length \(\ell \in [27, 51] \mu m \). The measured and simulated transmission spectra are shown in Figs. 5(b) and (c), respectively. The resonance frequency redshifts gradually from 0.889 to 0.607 THz as \(l \) is increased from 27 to 45 \(\mu m \) with an interval of 8 \(\mu m \). Using the identical LMC circuit model previously shown, we obtain the agreeable fitting curve (Fig. 5(d)) with \(\{ a_1 = 0.044, a_2 = 0.258, f = 0.54 \} \), which is also in good agreement with the experimental results. Table 2 provides the circuit parameters for the different values of \(l \).

In addition, we fixed the values, i.e., \(h = 42 \mu m \) and \(l = 40 \mu m \), but made the value of \(d \) variable (Fig. 6(a)). Figures 6(b) and (c) present a remarkable redshift of amplitude transmission with dip enhancement, as \(d \) changes from 30 to 90 \(\mu m \). Compared with the MDU structure shown in Fig. 1, the structure in this case has its own characteristics: (i) from the point of view of the simulated electric field distribution and surface current, the mutual inductance effect between the two cross-bars in a unit cell is smaller than the effect between the two adjacent cross-bars in the two neighboring unit cells.

Table 1. Obtained Circuit Parameters in the LMC Model for Various Values of \(h \) (\(l = 45 \mu m, d = 30 \mu m, \) and \(w = 5 \mu m \))

<table>
<thead>
<tr>
<th>(h (\mu m))</th>
<th>7</th>
<th>11</th>
<th>15</th>
<th>19</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1) (pH)</td>
<td>19.036</td>
<td>12.883</td>
<td>7.1948</td>
<td>2.4457</td>
<td>0.6801</td>
</tr>
<tr>
<td>(M_1) (pH)</td>
<td>-2.5980</td>
<td>-1.4630</td>
<td>-0.6335</td>
<td>-0.1395</td>
<td>-0.0257</td>
</tr>
<tr>
<td>(M_2) (pH)</td>
<td>11.178</td>
<td>7.4370</td>
<td>5.5579</td>
<td>4.4186</td>
<td>4.0028</td>
</tr>
<tr>
<td>(C_1) (FF)</td>
<td>1.0088</td>
<td>0.7485</td>
<td>0.4881</td>
<td>0.2278</td>
<td>0.0976</td>
</tr>
<tr>
<td>(C_2) (FF)</td>
<td>0.1222</td>
<td>0.3665</td>
<td>0.6109</td>
<td>0.8552</td>
<td>0.9774</td>
</tr>
</tbody>
</table>

Table 2. Obtained Circuit Parameters in the LMC Model for Various Values of \(l \) (\(d = 30 \mu m, w = 5 \mu m, \) and \(h = 10 \mu m \))

<table>
<thead>
<tr>
<th>(l (\mu m))</th>
<th>27</th>
<th>35</th>
<th>43</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1) (pH)</td>
<td>2.4457</td>
<td>7.1948</td>
<td>12.833</td>
<td>19.036</td>
</tr>
<tr>
<td>(L_2) (pH)</td>
<td>26.509</td>
<td>26.509</td>
<td>26.509</td>
<td>26.509</td>
</tr>
<tr>
<td>(M_1) (pH)</td>
<td>-0.1395</td>
<td>-0.6335</td>
<td>-1.4630</td>
<td>-2.5980</td>
</tr>
<tr>
<td>(M_2) (pH)</td>
<td>8.1153</td>
<td>8.1153</td>
<td>8.1153</td>
<td>8.1153</td>
</tr>
<tr>
<td>(C_1) (FF)</td>
<td>0.1758</td>
<td>0.3768</td>
<td>0.5778</td>
<td>0.7787</td>
</tr>
<tr>
<td>(C_2) (FF)</td>
<td>0.7365</td>
<td>0.7365</td>
<td>0.7365</td>
<td>0.7365</td>
</tr>
</tbody>
</table>
leading to an extra mutual inductance M_5 (Fig. 6(d)); (ii) self-inductance and mutual inductance should be taken into consideration due to the gaps in the middle of the bars normal to the cross-bars. The LMC circuit model for this case is shown in Fig. 6(d). Although the LMC circuit model shows a slight difference compared with the previous one, all circuit parameters can still be calculated with the aforementioned equations. The corresponding capacitances and inductances are depicted as: $C_3 = a_3 \varepsilon_0 \varepsilon_{\text{eff}} (l - w) \frac{K_k}{K_{k_0}}$, $L_3 = \Lambda (l - w)$, $L_4 = \Lambda (d)$, $M_3 = \Xi (l - w, d - w)$, $M_4 = \Xi (l, 2h - w)$, and $M_5 = \Xi (l, P - 2h + w)$.

By solving Eq. (7), the expression of the resonance frequency can be obtained as:

$$f_0 = \frac{1}{2\pi \sqrt{(2L_3 + L_4 + 2M_3 + M_4 + M_5)C_3}}. \quad (8)$$

The red solid line in Fig. 6(e) represents the analytically predicted resonance frequency based on Eq. (8) with the following parameters: $\{a_3 = 0.113, f = 0.54\}$. The resonance is also in good agreement with the simulated results and enables us to confirm the validity of the LMC circuit model. The obtained circuit parameters are displayed in Table 3.

In conclusion, an equivalent LMC circuit model is presented. The capability for accurate analysis of the design of THz filters comprising a square array of subwavelength U-shape resonators is demonstrated as well. The model allows the derivation of an analytical expression of each circuit parameter and takes into account the presence of a dielectric substrate. Thus, the model can predict the resonance frequency of the proposed structures with very good accuracy. The results have been compared with both experimental measurements and full-wave simulations for various designs. Good agreement has been achieved, which indicates promising applications in terahertz device designs.

This work was supported by the National Natural Science Foundation of China (Nos. 61028011, 61070343, and 60977064), the U.S. National Science Foundation, the Tianjin Sci-Tech Program (Nos. 09ZCKFGX01500 and 10JCYBJC01400), and the 111 Program of China (No. B07014).

Table 3. Obtained Circuit Parameters in the LMC Model for Various Values of d ($l = 40 \mu m$, $w = 5 \mu m$, and $h = 42 \mu m$)

<table>
<thead>
<tr>
<th>d (μm)</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_3 (pH)</td>
<td>22.301</td>
<td>22.301</td>
<td>22.301</td>
<td>22.301</td>
</tr>
<tr>
<td>L_4 (pH)</td>
<td>18.236</td>
<td>35.286</td>
<td>53.981</td>
<td>73.834</td>
</tr>
<tr>
<td>M_3 (pH)</td>
<td>-4.3635</td>
<td>-2.6048</td>
<td>-1.8426</td>
<td>-1.4218</td>
</tr>
<tr>
<td>M_4 (pH)</td>
<td>1.1261</td>
<td>3.0697</td>
<td>5.8686</td>
<td>9.4260</td>
</tr>
<tr>
<td>M_5 (pH)</td>
<td>3.8029</td>
<td>9.3747</td>
<td>16.448</td>
<td>24.628</td>
</tr>
<tr>
<td>C_3 (pF)</td>
<td>1.2748</td>
<td>1.0399</td>
<td>0.9322</td>
<td>0.8667</td>
</tr>
</tbody>
</table>

References