LBO 晶体 I 类倍频相位匹配转换效率的数值计算

张鑫 王爱坤 薛建华 宋臻

（河北科技大学物理系，河北 石家庄 050018）

摘要 数值计算了 LBO 晶体中基频光波长为 1064 nm 时，在 I 类倍频相位匹配范围内所有匹配方向上慢、快光的走离角和折射率。基频慢光的走离角范围为 0°～1.35°，倍频快光的走离角范围为 0°～1.52°，慢光快光相位角范围为 0°～1.15°。在不忽略三波走离角和折射率变化的情况下，数值求解了三波耦合波方程及在各相位匹配方向上倍频转换效率随通光长度的变化规律。结果表明，在匹配方向约为 (42.2°, 19°) 时转化效率达到极大值，约为 3.35%。在每一匹配方向上，其转化效率与通光长度的平方成正比。

关键词 非线性光学；匹配角；转化效率；数值计算；耦合波方程

中图分类号 O437 **文献标识码** A **doi**：10.3788/LOP18.121602

Numerical Calculation of Conversion Efficiency in Type I Frequency-Doubling on LBO Crystal

Zhang Xin Wang Aikun Xue Jianhua Song Zhen

(Department of Physics, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

Abstract The walk-off angle, interaction angle and refractive index are calculated with numerical methods under type I frequency-doubling phase-matching direction, while the fundamental frequency wavelength is 1064 nm in LBO crystal. The walk-off angle of the fundamental frequency wavelength is 0°～1.35°. The walk-off angle of the doubling frequency wavelength is 0°～1.52°. The interaction angle between fundamental frequency and doubling frequency waves is 0°～1.15°. The coupled wave equations and the conversion efficiency are numerical calculated considering the change of walk-off angle, the interaction angle and the refractive index. The results show that the conversion efficiency has maximum value (3.35%) when the phase matching direction is about (42.2°, 19°). In addition, the conversion efficiency is proportional to the square of the crystal length.

Key words nonlinear optics; phase matching angle; conversion efficiency; numerical calculation; coupled wave equation

OCIS codes 160.4330; 140.3515; 010.3640

1 引言

变频转化效率是变频技术的重要内容之一[1～3]。在各向异性的晶体中，三波均存在一定的走离角[4]，而走离角、折射率对变频的转换效率均有影响。由于耦合波方程是复数非线性微分方程组，理论和数值计算都比较困难，因此通常文献中只对这些影响因素做了定性分析和说明，没有具体计算。

本文利用 Fortran 编程，在共线匹配角范围内，考虑三波走离角及折射率的变化等因素，数值求解 LBO 晶体耦合波方程，进而计算 I 类倍频转化效率，以对变频技术的实施提供理论数据。

2 LBO 晶体耦合波方程的化简

1) 引言

变频转化效率是变频技术的重要内容之一[1～3]。在各向异性的晶体中，三波均存在一定的走离角[4]，而走离角、折射率对变频的转换效率均有影响。由于耦合波方程是复数非线性微分方程组，理论和数值计算都比较困难，因此通常文献中只对这些影响因素做了定性分析和说明，没有具体计算。

本文利用 Fortran 编程，在共线匹配角范围内，考虑三波走离角及折射率的变化等因素，数值求解 LBO 晶体耦合波方程，进而计算 I 类倍频转化效率，以对变频技术的实施提供理论数据。
式中，A_1, A_2, A_3 分别为三波光矢量的复振幅，K_1, K_2, K_3 分别为三波光矢量的大小，a_1, a_2, a_3 分别为三波走离角，$\beta_1, \beta_2, \beta_3$ 分别为基频光与倍频光的互作用角，d_{ii} 为有效非线性参数。z_i 为第二波的能流方向。

LBO 晶体是双轴晶体，属于 mm2 点群。为了计算方便，建立光学主轴坐标系。即三个主折射 $n_x < n_y < n_z$，两光轴在 xz 截面内。

慢、快光走离角分别为

$$
\begin{align*}
\alpha^{(s)}(\omega) &= \arccos[a^s(\omega)b^s(\omega) + a^s(\omega)b^s(\omega) + a^s(\omega)b^s(\omega)] \\
\alpha^{(i)}(\omega) &= \arccos[a^i(\omega)b^i(\omega) + a^i(\omega)b^i(\omega) + a^i(\omega)b^i(\omega)]
\end{align*}
$$

式中 θ, ϕ 为波矢 \mathbf{K} 在光学主轴坐标系的球坐标 δ，可由下式确定

$$
\begin{align*}
\tan \Omega &= \frac{n_x(\omega)}{n_z(\omega)} \sqrt{n_x^2(\omega) - n_y^2(\omega)}^{1/2} \\
\cot \delta &= \frac{\cos^2 \theta \cos^2 \phi + \sin^2 \phi}{\cos \theta \sin 2 \phi}
\end{align*}
$$

慢、快光电场强度单位矢量方向分别为

$$
\begin{align*}
a^{(s)} &= \frac{1}{\rho} \left[\begin{array}{c} n_x^2(\omega) b^s(\omega) \\ n_y^2(\omega) b^s(\omega) \\ n_z^2(\omega) b^s(\omega) \end{array} \right] \\
\rho &= \sqrt{\frac{b^s(\omega)^2}{n_x^2(\omega)} + \frac{b^s(\omega)^2}{n_y^2(\omega)} + \frac{b^s(\omega)^2}{n_z^2(\omega)}} \\
a^{(i)} &= \frac{1}{Q} \left[\begin{array}{c} n_x^2(\omega) b^i(\omega) \\ n_y^2(\omega) b^i(\omega) \\ n_z^2(\omega) b^i(\omega) \end{array} \right] \\
Q &= \sqrt{\frac{b^i(\omega)^2}{n_x^2(\omega)} + \frac{b^i(\omega)^2}{n_y^2(\omega)} + \frac{b^i(\omega)^2}{n_z^2(\omega)}}
\end{align*}
$$

可推得两基频光与倍频光之间的互作用角为

$$
\begin{align*}
\beta_1 &= \arccos \cos a_1 \cos a_2 \\
\beta_2 &= \arccos \cos a_2 \cos a_3
\end{align*}
$$

由于三波耦合走离角的存在，即使在共线匹配下，各波光矢量的大小及方向会随着耦合长度而变化，为方便起见，在求解 (1) 式时可设复振幅

$$
\begin{align*}
A_1(z_i) &= A_1^s(z_i) + iA_1^i(z_i) \\
A_2(z_i) &= A_2^s(z_i) + iA_2^i(z_i) \\
A_3(z_i) &= A_3^s(z_i) + iA_3^i(z_i)
\end{align*}
$$
这样，就把复耦合波方程化简为 6 个实微分方程，便于求解。从 (9) 式可以看出 6 个微分方程组成了非线性微分方程组，仍难以解析求解。因为在每一个不同的匹配方向上，走离角 $\alpha_1, \alpha_2, \alpha_3$，互作用角 $\beta_1, \beta_2, \beta_3$，有效非线性系数 d_{ai} 的数值不同，所以即使数值求解 (9) 式计算量也很大。

3 LBO 晶体 I 类倍频走离角及互作用角的计算

联立 (2)～(7) 式，通过 Fortran 编程数值计算，取两基频慢光频率为 1064 nm，倍频快光为 532 nm，主折射率为 [3]

$$1064 \text{ nm}: \quad n_r = 1.5656, \quad n_s = 1.5905, \quad n_p = 1.6055,$$

$$532 \text{ nm}: \quad n_r = 1.5785, \quad n_s = 1.6065, \quad n_p = 1.6212.$$

可计算出 i 类倍频匹配范围内慢、快光走离角、两基频慢光与倍频快光互作用角的计算结果如图 1 所示。图中 θ 为 I 类匹配角，其范围为 [7] (17°～90°)，a_i 为基频慢光的走离角，a_i 为倍频快光的走离角，β_3, β_2 (即 $\beta_3 = \beta_2$) 为两基频慢光与倍频快光之间的互作用角。

从图 1 可以看出，基频慢光的走离角在 0°～1.35% 范围内变化，$\theta = 90^\circ$ 时走离角为零。在 $\theta \approx 36^\circ$ 时，最大走离角为 1.35%；倍频快光的走离角在 0°～1.52% 范围内变化，在 $\theta = 90^\circ$ 时走离角为零。在 $\theta \approx 51^\circ$ 时，最大走离角为 1.52%；互作用角的变化范围是 0°～$1.15^\%$，在 $\theta = 90^\circ$ 时互作用角为零。在 $\theta \approx 45^\circ$ 时，最大互作用角为 $1.15^\%$。

4 LBO 晶体共线匹配下折射率的数值计算

根据各向异性晶体的菲涅耳公式 [3]：

$$n^4(n_i^2K_i^x + n_i^2K_i^y + n_i^2K_i^z) - n^4[n_i^2n_p^2(K_i^x + K_i^y) + n_i^2n_p^2(K_i^x + K_i^z) + n_i^2n_p^2(K_i^x + K_i^y)] + n_i^2n_p^2n_s^2 = 0.$$

(10)

在主轴坐标系下，波矢单位矢量的分量为

$$K_x = \sin \theta \cos \varphi, \quad K_y = \sin \theta \sin \varphi, \quad K_z = \cos \theta,$$

(11)

令

$$A = (n_i^2K_i^x + n_i^2K_i^y + n_i^2K_i^z),$$

(12)

$$B = n_i^2n_p^2(K_i^x + K_i^y) + n_i^2n_p^2(K_i^x + K_i^z) + n_i^2n_p^2(K_i^x + K_i^y),$$

(13)

$$C = n_i^2n_p^2n_s^2.$$

(14)
将(11)～(14)式代入(10)式得到关于 n^i 的一元二次方程

$$An^i + Bn^i + C = 0,$$ \hspace{1cm} (15)

解得:

$$n^i = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$ \hspace{1cm} (16)

在匹配角范围内，数值计算慢、快两光的折射率如图 2 所示。图中 n_1 为基频慢光折射率，n_2 为倍频快光折射率。由图 2 可以得出，LBO 晶体 1064 nm 慢光折射率范围为 1.5905~1.6055, 532 nm 快光折射率范围为 1.5823~1.6065。

5 LBO 晶体 I 类转化效率的数值计算

5.1 倍频光光矢量振幅随通光长度的变化关系

利用 LBO 晶体 1064 nm 基频光 I 类共线倍频匹配角 (θ, φ) 和有效非线性系数 d_{eff}，把前面算出的走离角、互作用角和折射率代入(9)式中，并数值求解。

取边界条件(单位：$\mu V/m$):

$$A_i'(z = 0) = 1, \quad A_i'(z = 0) = 0,$$
$$A_i'(z = 0) = 1, \quad A_i'(z = 0) = 0,$$
$$A_i'(z = 0) = 0, \quad A_i'(z = 0) = 0.$$ \hspace{1cm} (17)

运算过程中, 不考虑激光光斑大小的影响。计算显示 $A_i'(z) = 0$ $(i=1,2,3)$, $A_i'(z)$ 如图 3 所示。

图 3 中分别给出了匹配角 θ 为 86°, 62°, 42°, 37°, 36° 和 18° 时倍频光的振幅随通光长度的变化曲线。曲线显示在每一相位匹配方向上, 倍频光的振幅与通光长度呈线性关系, 即三波互作用效率与通光长度的平方成正比, 这与实验吻合; 不同匹配角方向上斜率不同, 也说明不同方向的走离角、互作用角、有效非线性系数对转换效率的影响。

5.2 三波互作用效率与匹配角之间的关系

在共线相位匹配下, 根据定义, 光波传输方向上三波互作用的效率为

$$\eta(z) = \frac{A_i'(z)}{A_i'(z = 0)}.$$ \hspace{1cm} (18)

在通光长度为 20 mm 时，三波互作用的效率与走离角变化关系如图 4 所示。

比较图 4 和参考文献[5]中的数据分析可知, 走离角、互作用角、折射率对三波互作用的效率都有影响。匹配角 $\theta \approx 18^\circ$ 时影响最大，且不考虑这些影响时三波互作用效率相对误差约为 4.7%。

6 结 论

在 LBO 晶体中, 1064 nm 慢光的最大走离角为 1.35°; 532 nm 快光的最大走离角为 1.52°; 慢与快光的
最大互作用角为 1.15°。通过数值求解耦合波方程，倍频光的振幅与通光长度成正比，即三波互作用的效率与通光长度的平方成正比。计算结果显示出三波互作用的效率主要取决于有效非线性系数。在不同的匹配方向上，走离角、互作用角、折射率对三波互作用的效率影响不同，在匹配角 θ≈18°时影响最大，与不考虑这些因素时三波互作用的效率相对误差约为 4.7%。

考虑走离角、互作用角、折射率影响后，晶体长度为 20 mm 时，在匹配角为 42.2°时三波互作用的效率最高，约为 3.35%。

参考文献

2. 黄金哲，毛蓓丽，戴恩等。倍频率线性调制晶体中的稳态倍频研究[J]。光学学报，2010，30(9): 2634~2638
3. 陈建良，吴杨华，蒋世勋等。Bi_{3}O_{5}Bi_{2}O_{3}-GeO_{2} 玻璃的三阶非线性研究[J]。光学学报，2010，30(7): 2074~2079
4. 毛建新。全固态激光及非线性光学频率变换技术[M]。科学出版社，2007.245~250
5. 薛健华，任清华，陈建良。三硼酸锂晶体 I 类和 II 类相位匹配角及有效非线性系数的计算[J]。光学学报，2009，29(12): 3477~3481
7. 毛建新。全固态激光及非线性光学频率变换技术[M]。科学出版社，2007，105~107, 678~682, 706~710
8. 薛健华，任清华，陈建良。三硼酸锂晶体 I 类和 II 类相位匹配角及有效非线性系数的计算[J]。光学学报，2009，29(12): 3477~3481
9. 毛建新。全固态激光及非线性光学频率变换技术[M]。科学出版社，2007，245~250