学术期刊可以用微信做什么，快来看看！

微信自动应答服务平台
—— 微时代 微革命——

微服务
移动互联网时代的营销革命
简单快捷 • 高效互动 • 随时随地 • 广泛传播

微信扫一扫
开启智慧“微服务”
Wide band polarizer with suspended germanium resonant grating

Wugang Cao (曹武刚)1,2, Jianyong Ma (麻建勇)1*, and Changhe Zhou (周常河)1

1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
*Corresponding author: mjy6000@163.com

Received May 15, 2012; accepted May 25, 2012; posted online September 28, 2012

An ultra broad band polarizer that operates in the telecommunication wavelength band is proposed. This device, which consists of a single suspended germanium resonant grating layer, is designed using the inverse mathematical method and the rigorous vector diffraction theory. Calculated results indicate that the ultra broad band polarizer exhibits extremely high reflection ($R > 99\%$) for TE polarization light and high transmission ($T > 99\%$) for TM polarization at the wavelength range greater than 300 nm, and it has an extinction ratio of approximately 1000 at the 1550-nm central wavelength. The results of the rigorous coupled wave analysis indicate that the extremely wide band property of the TE polarization is caused by the excitation of strong modulation guided modes in the design wavelength range.

OCIS codes: 230.0230, 230.5440.
doi: 10.3788/COL201210.112301.

A polarizer that can convert unpolarized light into a specific polarized state is an extremely important optical element in telecommunication and photonic systems. Actual applications mainly use metal grid grating (MGG) and dielectric multilayer stacks (DMSs) as polarizers[1,2]. MGG is based on polarization absorption and it has been investigated extensively because of its simple structure and compactness. On the other hand, DMS polarizers have been fabricated using thin-film technology to overcome the issue of metal material absorption and narrow band filters can be produced based on the GMR effect. In 2008, Lee et al. fabricated a silicon-based GMR polarizer with an experimental extinction ratio of approximately 97 at a central wavelength of 1510 nm over the wavelength range of approximately 40 nm [8]. In 2011, the same group reported an improved silicon-based GMR polarizer with bandwidth of approximately 200 nm around the optical communication wavelength band [10].

Based on the physical mechanism of the GMR effect, this letter introduces an excellent wide band suspended germanium polarizer (SGP) that operates in the telecommunication spectrum band by using the global optimization technique and rigorous coupled wave analysis (RCWA) method [11]. Germanium material is the most commonly used optical IR material in terms of modern nano-device processing technology. Germanium exhibits high refractive index contrast and low optical absorbance properties, making it very easy to integrate into other optical devices. Suspended grating (SG) is widely used in micro-electromechanical system (MEMS) devices for applications in certain areas, such as wavelength selection and optical filtering, among others [12,13]. SG lacks a substrate, and thus, it can easily be tuned using a MEMS actuator. In this letter, a single-layer suspended germanium grating is used as a wide band polarizer to fabricate the optical device. The calculated results by using RCWA show that the proposed polarizer is tolerant to the deviations of structure parameters, making it easy to fabricate using current intergrated circuit (IC) technology.

Figure 1 shows the proposed structure that consists of a single-layer suspended germanium grating. The incident and substrate media were assumed to be air ($n_{inc} = n_{sub} = 1$), and germanium material with a refractive index of 4 was the material used for the grating ridge. The structure was illuminated from the top with a normal incident angle, and only the zero-order reflection was considered in the proposed design. For simplicity, the material of the device was assumed to be loss- and dispersion-free.

To design a wide band polarizer over the spectrum band of 1.5–1.6 μm, RCWA together with particle swarm optimization (PSO) were used to calculate and optimize the device. Lee et al. first used PSO, which was a robust and evolutionary strategy, for the optimization design of GMR grating. The most narrow-band polarizer realized 99% reflection for TE polarization light and high transmission for TM polarization. In this letter, a single-layer suspended germanium grating is employed as a wide band polarizer for telecommunications.

Fig. 1. Structure of a single-layer suspended grating under TE and TM illuminations at a normal incident angle. The high and low refractive indices of the grating structure are labeled as n_c and n_s, respectively. The refractive indices of the cover and substrate are denoted as n_c and n_s, respectively. The depth of the grating structure is expressed as d.

1671-7694/2012/112301(3) 112301-1 © 2012 Chinese Optics Letters
distinctive advantage of PSO lies in its powerful global searching ability to handle different design problems with multiple parameters. For the structure, the refractive indices of the substrate, incident layer, and grating ridge were fixed as constants, and thus, they were not optimized in the calculations. Period \(T\), grating thickness \(d\), and fill ratio \(f\) were chosen as the optimizing parameters. RCWA was used to calculate the diffraction efficiency (DE) of the structure with each optimized parameter over a wide spectrum band.

The PSO algorithm was used for the optimization design of the proposed polarizer. The merit function (MF) was taken to be a RMS error function as

\[
MF = \left\{ \frac{1}{M} \sum_{\lambda} \left[R_{\text{desired}}(\lambda) - R_{\text{design}}(\lambda) \right]^2 \right\}^{1/2}, \tag{1}
\]

where \(R_{\text{desired}}(\lambda)\) is the desired reflection of zero order in the corresponding wavelength range for the TE and TM polarizations, \(R_{\text{design}}(\lambda)\) is its PSO-designed counterpart, and \(M\) is the number of wavelength points. RCWA was used to calculate the DE. All parameters included in the proposed design were arrayed as \((T, d, f)\). The minimum and maximum values of each parameter were set to \((200, 10, 0.1)\) and \((2000, 2000, 0.9)\), respectively, where the units of measurement of the first two parameters are in nanometers. The optimized wavelength ranged from \(1300\) to \(1900\) nm, and the wavelength interval was \(2\) nm, corresponding to \(M = 300\) in Eq. \((1)\). The structure parameters were \((1016, 249, 0.16)\) after \(2000\) iterations, and the design process took approximately \(60\) min using an ordinary PC.

Figure 2(a) shows the reflection spectra of the polarizer for both TE and TM polarizations. The reflection over the spectrum band of \(1.35–1.9\) \(\mu\)m for TE polarization is greater than \(90\%\), whereas the reflection is extremely low for the TM polarization light in the same wavelength region. On the other hand, the reflection and transmission for TE and TM polarization light are both greater than \(99\%\) in the wavelength band of \(1.4–1.7\) \(\mu\)m, as shown in Figs. 2(b) and (c), respectively. Therefore, an extraordinarily wide spectrum band polarizer with extraordinary extinction can be obtained using this kind of structure.

The transmission was plotted on a logarithmic scale to clearly illustrate the high reflection and large bandwidth of the TE polarization light. The TE polarization contained two transmittance dips at wavelengths \(1.425\) and \(1.603\) \(\mu\)m, in the range of \(1.4–1.7\) \(\mu\)m, each of which corresponds to a leaky mode resonance, as shown in Fig. 3\(^{[14]}\). The transmittance dips show that the broad reflection band is caused by the co-existence and interaction of the TE leaky modes. Therefore, the simultaneous co-existence and interaction of the leaky modes of the TE polarized waves resulted in extremely high reflection properties.

Figures 4(a) and (b) show the relationships between grating depth and bandwidth with high reflection and high transmission for TE and TM polarizations, respectively. The reflection was kept greater than a very high
value ($R > 90\%$) over the entire wavelength band of 1.4–1.7 μm even as the groove thickness was increased from 225 to 260 nm for TE polarization. Moreover, a much large groove thickness tolerance in the optical communication wavelength band that provides a favorable advantage for the fabrication process was obtained. For the TM polarization, the transmission was kept at a very high value ($R > 99\%$) in the corresponding wavelength band and grating thickness. The transmission spectrum in the entire wavelength band was very flat compared to the reflection spectrum of the TE polarization when the grating thickness was varied. Therefore, the range of grating thickness required to acquire the high optical property of polarizer is mainly decided by the TE polarization light. In general, grating fabrication has an extraordinarily large fabrication tolerance regardless of whether the etching is shallow or deep. Thus, an excellent wide band polarizer can be obtained in the telecommunication wavelength band by using the parameters in the proposed design.

Figures 5(a) and (b) show the DE of the polarizer as a function of fill ratio and incident wavelength for the TE and TM polarizations, respectively. In general, variations in the fill ratio play an important role in the reflection of TE polarization light and they have a minor effect on the transmission of TM polarization in the corresponding wavelength range. The DE of the polarizer can maintain very high values (above 90\%) if the fill ratio is changed from 0.1 to 0.2.

In conclusion, a wide band polarizer over the telecommunication wavelength band by using PSO and RCWA is designed. The polarizer based on a single-layer suspended grating has a simpler structure than other designs. In addition, the proposed polarizer is capable of offering high reflection ($R > 99\%$) for TE polarization light and high transmission ($T > 99\%$) for TM polarization over the 300-nm wavelength range, as well as large tolerance for fabrication in the spectrum band of 1.5–1.6 μm, making it easy to fabricate using current IC technology.

This work was supported by the Natural Science Foundation of Shanghai Committee of Science and Technology under Grant No. 10ZR1433500.

References