学术期刊可以用微信做什么，快来看看！

微信自动应答服务平台
微时代 微革命

微服务
移动互联网时代的营销革命
简单快捷 • 高效互动 • 随时随地 • 广泛传播
Packaging multi-wavelength DFB laser array using REC technology

Yi Ni (倪屹)\(^1\), Xuan Kong (熊轩)\(^1\), Xiaofeng Gu (顾晓峰)\(^1\), Xiangfei Chen (陈向飞)\(^2\), Guanghui Zheng (郑光辉)\(^3\), and Jia Luan (栾佳)\(^3\)

\(^1\)Shenzhen Key Laboratory of Laser Engineering, Jiangnan University, Wuxi 214132, China
\(^2\)Microwave-Photonics Technology Laboratory, National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China
\(^3\)Wuhan Oudi Electronic Technology Ltd, Wuhan 430070, China

Received May 7, 2013; accepted August 1, 2013; posted online September 15, 2013

Packaging of Distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this letter, DFB laser arrays of 4 channel @1 310 nm and 8 channel @1 550 nm are packaged. Experimental results show that both 4 channel @1 310 nm and 8 channel @1 550 nm have uniform wavelength spacing and average side mode suppression ratio (SMSR)>35 dB. When \(I = 35 \) mA, we get the total output power 1 mW of 4 channel @1 310 nm, and 227 \(\mu \)W of 8 channel @1 550 nm, respectively. The high frequency characteristic of the packaged chips is also demonstrated, and the requirements of 4×10 G or even 8×10 G system can be reached. We demonstrate the practical and low cost performance of REC technology and indicates its potential application in the future fiber-to-the-home (FTTH).

OCIS codes: 060.5625, 230.0250, 300.6370.
doi: 10.3788/COL201311.S20606.
For the lasers used in WDM-PON system, low cost and low power consumption is essentially needed. Compared with coupling lasers by mirrors and lens[6], the direct coupling method[7] may not get the optimizing coupling condition, but it is the best total solution for testing, detecting, and analyzing. Therefore, the direct coupling method is easy to be operated, and the schematic arrangement is shown in Fig. 1. This coupling method is to adjust free-space position between the DFB laser array and optical waveguide array channels to achieve even optical output power for each channel. The end part has single channel output through optical coupler which can get multi-channels coupling to a single-mode fiber (SMF).

In the above procedure, the manual adjusting equipment from the newport is shown in Fig. 2. The number of the laser’s output is equal to optical waveguide array’s input. Experiments show that the total coupling efficiency can reach 3% for each channel by this simple and rapid way. If lens array is used, mode matching between lasers and waveguide can be achieved, and the coupling efficiency will be increased greatly.

Optical fiber communication mainly uses two windows of 1 310 and 1 550 nm, respectively. Therefore, we focus on the packaging of 1 310- and 1 550-nm laser arrays, which have 4 channels @1 310 nm and 8 channels @1 550 nm, respectively. There are coaxial and butterfly typed two kinds packaging, we choose the classical butterfly typed or associate butterfly typed packaging for two reasons: one is that the butterfly one has additive thermo-electric cooler (TEC) to control the working temperature to assure stable output, the other is that the butterfly one uses ceramic metalizing technique to meet high frequency. Packaged 4 channel laser @1 310 nm is shown in Fig. 3.

![Fig. 1. Schematic arrangement of packaged MWL array.](image1)

![Fig. 2. Adjusting equipment of laser array in packaging.](image2)

After packaging, the laser array is tested with optical power meter, spectrum analyzer and vector network analyzer (VNA).

Figure 4 shows the $P−I$ curves of the packaged laser array at room temperature, and the threshold currents are from 15 to 20 mA. As shown in Fig. 4, 4 channels laser array @1 310 nm has good consistent slope about 16 mW/A. When $I=35$ mA, power of each channel is about 250 µW, and the total power can reach 1 mW. When $I=50$ mA, power of each channel is about 500 µW, and the total power can reach 2 mW, which can meet the requirement of ONU.

For 8 channels laser array @1 550 nm, when $I=35$ mA, the power of single channel is from 26.3 µW (−15.8 dBm) to 37.1 µW (−14.3 dBm) and the total value is 227 µW (−6.4 dBm). As the current increases, the diversity becomes obvious due to the different bar lengths at different channels and the mismatch of waveguide in assembly process. For both arrays @1 310 nm and @1 550 nm, coupling efficiencies are about 3%.

Figure 5 shows the side mode suppression ratio (SMSR) of the two packaged modules, for 4 channel laser array @1 310 nm average SMSR is larger than 35 dB; and for 8 channel laser array @1 550 nm average SMSR is larger than 40 dB, which can meet the requirement of laser sensor for gas monitoring, like CH₄, CO, etc. When $I=35$ mA, we can get uniform output light power in 8 channel array as shown in Fig. 5. However, the $P−I$ curves of 8 channels in Fig. 4 shows that each channel’s output power becomes divergent with increasing current, which is unavoidable for chips with long laser bar. The output power divergence can be solved through adjusting the current in application.

S21 is often used as gain of S parameter for measuring upper limit of transport communication. Figure 6 shows the transmission factor S21 of 4 channel laser array @1 310 nm and 8 channel laser array @1 550 nm.

![Fig. 3. Photograph of the packaged 4 channel laser @1 310 nm.](image3)

![Fig. 4. P−I curves of (a) 4 channels @1 310 nm and (b) 8 channels @1 550 nm.](image4)

![Fig. 5. Photograph of the packaged 8 channel laser array @1 550 nm.](image5)
Fig. 5. Test results based on spectrum analyzer of (a) 4 channels laser array @1310 nm and (b) 8 channels laser array @1550 nm.

Fig. 6. $I=25^\circ, I=50\ mA$, the frequency characteristic of (a) 1310-nm laser array with 4 channels and (b) 1550-nm laser array with 8 channels.

It shows that the 3-dB point of each channel is larger than 10 G, which means that 4 channel (or 8 channel) array can meet the requirement of 40 G (or 80 G) high-speed transmission.

We conclude from Fig. 6 that S_{21} is influenced by the length of gold bonding wire, and longer gold bonding wire would introduce more parasitic inductance. In 8 channel array, the middle channel like channel 4 or 5 has shorter gold bonding wire, hence its S_{21} is larger than that in channel 1 or 8.

Experiment results show that the packaging of 4 channel laser array @1310 nm and 8 channel laser array @1550 nm has been successfully achieved with uniform light power output in each channel. In future work, we will try to improve the coupling of 8 channels laser array, focusing on the consistency of 8 channel optical output power by changing coupling facility and optimizing optical design.

Experimental results confirm the feasibility of laser array packaging, which can even reach the ITU-T standard without temperature control. Moreover, direct modulation in laser array can reduce the cost compared with the external modulation.

In conclusion, we package the MWL array chip based on REC technology to carry out the important transition from chip to system application. The average SMSR of 4 channel laser array @1310 nm and 8 channel laser array @1550 nm are both above 35 dB, uniform wavelength spacing and good frequency characteristic are also demonstrated. In future work, we will try to improve the coupling of 8 channels laser array both @1310 nm and @1550 nm, and focus on the consistency of 8 channels optical output power. In general, DFB laser array based on REC technology can basically conform to the ITU-T standard of communication at room temperature. Therefore, this letter provides the potential application of REC technology in future.

This work was supported by the Program for New Century Excellent Talents in University (NCET-11-0659) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References