学术期刊可以用微信做什么，快来看看吧！

微信自动应答服务平台

— 微时代，微革命 —

微服务
移动互联网时代的营销革命

简单快捷 • 高效互动 • 随时随地 • 广泛传播

微信扫一扫
开启智慧“微服务”
In the future war, the role of spacecrafts, such as satellites, becomes increasingly important. It can be realized by means of satellites, such as reconnaissance, communications, navigation, and other important functions. Space control is the key factor in determining the outcome of the future war, so the satellite will become one of the important goals of enemy’s attack. With the high-speed development of laser-blinding weapons, the threats against solar arrays on spacecrafts are also growing. America and Russia began to research in laser anti-satellite weapons in 1960s and have successfully conducted series of laser anti-satellite tests since 1990s. Meanwhile, they have specially focused on the researches on satellite laser protection and have mastered considerable protective measures. Solar array is an equipment that transforms the energy of solar radiation into electrical energy, and it is sure to maintain a spacecraft running in orbit. Strong irradiation of high-energy laser to solar cell can destroy photovoltaic device and makes the spacecraft ineffective. To ensure reliable operation and improve the viability of the spacecraft during wartime, solar arrays must be effectively protected.

In this letter, we introduce the project of multilayer dielectric film based on conventional optics to design laser-protective coating. A desired material with an ideal refractive index is used to optimize the design results. Two film-thickness masks are designed to improve the uniformity of large-size coatings. Experimental results show that the average spectral transmittance from 400 to 1000 nm is higher than 85%, the attenuation of high-energy laser at both 532 and 1064 nm is larger than 98% in the range of ±20°, and the film uniformity of large area is more than 98.2%. The coating performance observed meets the requirements of both utilization of solar energy and laser protection.

In general, there are three main ways to prepare the laser-protective coatings. The first one is multilayer dielectric film based on traditional optics. It is advantageous because the preparation technique is reliable and the coating can obtain a higher laser damage threshold. But, its protection performance is poor under larger incident angle and it is also possible to hinder the useful signal at the same waveband when protecting against high-energy laser damage. The second one is the protective coating based on the principle of non-linear absorption. The most mature one is C₆₀, which...
Formula used to calculate reflective bandwidth of multilayer dielectric reflective film in the classical film theory is expressed as

$$\Delta \theta = \frac{2}{\pi} \sin^{-1} \left(\frac{n_H - n_L}{n_H + n_L} \right),$$

where, n_H and n_L are the refractive indices of two materials. This formula indicates that the reflective bandwidth relates only to refractive index (n). If the difference in n is larger, the reflective bandwidth changes are wider. The width of cutoff band in this design is also determined by this formula. Owing to the large difference 'n' of ZrO$_2$ ($n = 2.05$) and SiO$_2$ ($n = 1.46$), the width of the cutoff band is relatively wide. To reduce the cutoff bandwidth, difference 'n' of the two materials should be decreased. According to the theoretical analysis and calculation, it was found that better results are obtained if a material with the refractive index of 1.75 is used as a substitute for SiO$_2$ in the film design.

The curve (b) in Fig. 2 represents the optical transmittance spectra of an optimized design by using a material with $n = 1.75$. It can be observed that the cutoff bandwidth is significantly reduced. Figure 3 shows the optical transmittance of 0° and 20° incidence of the improved design.

To ensure a higher utilization of solar radiation for laser-protective coating of the solar array, 400–800 nm waveband followed by 800–1000 nm waveband is selected as the main waveband, which should have the transmittance as high as possible. At the same time, high laser intensity at 532 and 1064 nm must be cut down. SO$_2$ and ZrO$_2$ are selected for coating design because of their high laser damage threshold and mature preparation techniques. A 56-layer coating design is obtained after optimization. The optical transmittance of coating design is shown in Fig. 2 (curve a). It can be observed that the cut-off bands at 532 and 1064 nm are relatively wide. Although this helps ensure an effective attenuation to high-energy laser in a larger incident angle range, it prevents a few parts of the solar radiation and reduces the utilization of solar radiation, especially the solar radiation near 532 nm. So, the width of cutoff band should be reduced appropriately.

Fig. 2. Transmittance curves of the protective coating design.

Fig. 3. Transmittance curves at 0° and 20° incidence of the improved design.

Fig. 4. Thickness distribution curves of the related materials.
range, but also ensure the solar energy utilization ratio as high as possible.

The results obtained from the previous section indicate that results will be better if a material with the refractive index of 1.75 is used as a substitute for SiO$_2$ in the film design. In addition, in order to avoid the damage from high-power laser, this material should also have a high laser damage threshold. But in fact, materials available for this purpose are limited.

It is difficult to find an ideal material with the refractive index of 1.75. In order to obtain such a material with an ideal refractive index, we developed a method to prepare mixed materials, e.g., ZrO$_2$ and SiO$_2$. ZrO$_2$ and SiO$_2$ are mixed in a certain quantity, which resulted in a mixed material coating, for which the refractive index ($n = 1.75$) is between that of ZrO$_2$ and SiO$_2$. Furthermore, it has a high laser damage threshold. Subsequently, better experimental results are obtained with this mixed material in the preparation of laser-protective coating.

In order to obtain adequate supply power for spacecraft, large surface area of solar array is necessary. This requires a laser-protective coating with uniform thickness in a large area. Mathematical analysis and fitting method are used to establish the models of evaporation characteristics of the materials and film thickness uniformity to ensure a better uniformity of the protective coating in a large area. Film thickness masks for evaporation are designed using different materials, and therefore the coating uniformity is improved by optimizing the corresponding assistant means of preparation technology.

Figure 4 shows the thickness distribution curves of the film materials within Φ400 mm area; curves 1 and 2 represent the thickness distribution of ZrO$_2$ and ZrO$_2$ and SiO$_2$ mixed material prepared by ion-assisted deposition method. The nonuniformity is about 9%. Curves 3 and 4 represent the thickness distribution after applying film thickness mask technology. The nonuniformity is 1.6% and 1.9%, respectively. It can be concluded that the material uniformity has been significantly improved after the application of film thickness mask and it can meet the requirement of large area coatings.

Fig. 5. Transmittance test curves at 0° and 20° incidence of the protective coating.

Curves 1 and 2 in Fig. 5 represent the optical transmittance experimental results of the same laser-protective coating sample at 0° and 20° incident angles, respectively, which show that the average spectral transmittance at 400–1000 nm waveband is greater than 85%, and the attenuation of high-energy laser at 532 and 1064 nm is more than 98% in incidence angle range of ±20°. Figure 6 shows the optical transmittance experimental curves of four samples, which are evenly distributed from the center to the edge of a 400-mm radius. The test results show that the film thickness uniformity in Φ800 mm range is greater than 98.2%.

A kind of solar array laser-protective coating is designed and fabricated by using the multilayer dielectric film based on the traditional optics and the techniques of ion-assisted deposition method. Experimental results show that the protective coating meets the dual requirements of solar energy utilization and high-energy laser protection at 532 and 1064 nm. Furthermore, it meets the relevant requirements of engineering applications. However, the number of studies on the protective wavelength is limited, therefore further studies are needed. The protection at large incident angles (> ±20°) is insufficient, this needs further protection using optical baffle technology.

References