A real-time reflection imaging employing a terahertz (THz) camera as the imager and a 3.9 THz quantum-cascade laser (QCL) as the light source is demonstrated. The imaging light is collected and guided by only one off-axis parabolic mirror. The imaging distance is about 1 m. THz images of a coin and a knife are acquired and analyzed. An actual spatial resolution with a value of about 0.33 mm is achieved.

OCIS codes: 040.2235, 140.5965, 110.6795.

doi: 10.3788/COL201412.070401.

The schematic of real-time reflection imaging setup is shown in Fig. 1. Only one off-axis parabolic (OAP) mirror with focal length of 101.6 mm is used to collect and guide the terahertz light. The QCL is placed on the focus of the OAP mirror. The sample is fixed on the focal plane of the camera array and irradiated by a parallel THz light from the OAP mirror. The reflected angle on the surface of sample is adjusted to a certain value, about 10° to 25°, to obtain distortionless images and to make the reflected light be collected appropriately by the inner lens of the camera.

The QCL, operating at 12 K in continuous wave (CW) mode, is fixed inner a closed-cycle cryostat[13]. It is driven by a direct current (DC) power supply (PSM 6003) with a driven current of 0.2 A. The terahertz camera (IRV T0831C), with 320×240 pixels (23.5 µm per pixel), is driven by a DC bias with a value of 12 V and controlled by a commercial software to acquire the image data. The actual NEP of this camera is less than 100 pW at 3.9 THz. The frame rate of the camera is set as 8.5 Hz to get a good signal-to-noise ratio (SNR). The sample is fixed onto a metal plate or clamped by a clip to get a stable reflection plane. The imaging distance is about 1 m from the laser to the camera.

The beam spot reflected by the metal plate with no sample is collected by the camera and shown in Fig. 2. It is noted that the beam spot has a ring like property because of the metal-metal waveguide of the laser ridge[14]. This property will affect the imaging quality and spatial resolution although the camera has a small pixel size. The values along the \(X\) or \(Y\) axis in Fig. 2 are on behalf of pixel number of the terahertz camera array (the same below in Fig. 4).

The reflected terahertz images of two sides of the coin are acquired by using the ‘snap’ button in the control software connected to the camera. For comparison, their
optical images (photograph) are shown in Fig. 3(a). Figure 3(b) shows the resulting THz real-time images from the obverse (upper part) and reverse (lower part) of the coin. In order to get the similar color to the optical images, the high reflection region is displayed in bright copper. The number ‘5’ region and the flower pattern can be clearly seen in the THz images. Nevertheless, the reflected signal from patterns is lower than other regions, which is owing to that the patterns are embossed. The edges of the patterns are obscure, which results from the ring like property of the imaging beam spot.

To estimate the actual spatial resolution of the images in Fig. 3, the obverse facet of the coin is re-plotted in Fig. 4(b) and the reflection amplitude of a cross section at \(Y = 50 \) (the short dotted line) in the image is drawn in Fig. 4(a). We choose half amplitude of reflection amplitude as the threshold to estimate the spatial resolution. In Fig. 4(b), point A represents the amplitude in the no pattern area, and point B represents the amplitude at the edge of number ‘5’. The distance between point A and point B represents the spatial resolution on the camera, is equal to the width of two pixels, namely, 47.0 µm. The diameter of the image on the camera array is estimate to the total width of 120 pixels, namely, 2.82 mm. The actual diameter of the coin is 20 mm. Therefore, the diameter ratio between coin and its image is about 7.1. According to this ratio, the spatial resolution of real-time imaging is estimate to about 0.33 mm which is approximately equal to the actual width on the coin, with a value of about 0.3 mm. This result is better than that, with a value of about 0.5 mm, in Ref. [11].

The real-time reflection imaging of a concealed metal knife is also demonstrated. Figure 5 shows its optical image (a) and THz image (b). In the optical image, the knife is parceled by a white paper. In Fig. 5(b), the profile of the knife is obvious although it is concealed under a paper, which illustrated that the 3.9-THz light can penetrate one paper twice. In the center of the profile, with lower reflection amplitude and displayed in blue color, indicates that this is the hollow out region of the knife.

The results acquired in our real-time reflection imaging system provide a proof-of-concept demonstration with an imaging resolution of about 0.33 mm and a frame rate of 8.5 Hz. The actual imaging resolution is mainly limited by the homogeneity of the imaging beam spot. Beam quality improvement should be done to obtain a homogeneous light beam by employing the wobbling mirrors[15] to eliminate the ring like beam pattern. The lasers with good beam quality by waveguide processing could make the imaging resolution and quality better. Such as using three-order DFB gratings[5] or the THz metamaterials[16,17] that could work from 1 to 5 THz in the future to improve the beam profile. Meanwhile, to image for a larger object, the size ratio between sample and image should be taken into account.
In conclusion, we demonstrate the real-time reflection imaging of a coin and a concealed knife by employing a terahertz camera and a 3.9 THz QCL as the imager and the light source, respectively. The imaging distance is about 1 m. The real-time images of the coin and the concealed knife are acquired by using the control software of the camera. An about 0.33-mm imaging resolution is achieved, which is limited by the beam profile. To get better imaging resolution and quality, the wobbling mirrors could be used to eliminate the ring like beam pattern in this experiment, or choose the THz lasers with good beam quality, and the size ratio between sample and image should be taken into account while imaging for a larger object.

This work was supported in part by the “973” Program of China (No. 2014CB339803), the “863” Program of China (No. 2011AA010205), the National Natural Science Foundation of China (Nos. 61131006 and 61321492), the Major National Development Project of Scientific Instrument and Equipment (No. 2011YQ150021), the Important National Science and Technology Specific Projects (No. 2011ZX02707), the Major Project (No. YYYJ-1123-1), and the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (No. 11ZR1444200).

References