Observation of high-Q optomechanical modes in the mounted silica microspheres

Zhen Shen,1,2 Zhong-Hao Zhou,1,2 Chang-Ling Zou,1,2 Fang-Wen Sun,1,2 Guo-Ping Guo,1,2 Chun-Hua Dong,1,2,* and Guang-Can Guo1,2

1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
*Corresponding author: chunhua@ustc.edu.cn

Received June 24, 2015; revised July 30, 2015; accepted July 30, 2015; posted August 3, 2015 (Doc. ID 243647); published August 24, 2015

An efficient method to mount a coupled silica microsphere and tapered fiber system is proposed and demonstrated experimentally. For the purpose of optomechanical studies, high-quality-factor optical ($Q_m \sim 10^8$) and mechanical modes ($Q_o \sim 0.87 \times 10^4$) are maintained after the mounting process. For the mounted microsphere, the coupling system is more stable and compact and, thus, is beneficial for future studies and applications based on optomechanical interactions. Especially, the packaged optomechanical system, which is tested in a vacuum chamber, paves the way toward quantum optomechanics research in cryostat. © 2015 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.3.000243

1. INTRODUCTION

In the past decade, cavity optomechanics has been extensively studied in a variety of macro-, micro-, and nano-optical systems [1,2]. A number of remarkable optomechanical phenomena have been reported in experiments, ranging from amplifying and cooling of phonon modes [3–6], optomechanically induced transparency [7–9], and strong coupling between mechanical oscillator and optical cavity [10] to various mechanical applications [8–20]. Among these systems, whispering gallery mode (WGM) microresonators [21–23] have attracted a lot of attention due to their ease of fabrication, ultrahigh optical Q-factor, and various high-Q mechanical vibration modes.

However, the material absorption limited high-Q optical WGMs can only be excited efficiently through near field couplers [24] such as a silica fiber taper. Stable 3D optical stages are required to hold the microresonator-taper coupling system to keep and adjust the air gap between them and, thus, give rise to experiment difficulties in a relatively small vacuum chamber or cryostat [25]. To address this issue, several mounted methods have been proposed, and the high-Q WGM microresonators for practical sensing, filter applications, or microlasing are demonstrated [26–31]. Because we are typically concerned with the optical properties of the WGMs, the properties of the mechanical vibration of these microresonators have been overlooked in previous package schemes. For example, extra-polymer glue or the fiber taper adhered to the microresonator will significantly destroy the mechanical Q.

In this paper, we present the mounted microsphere system maintaining high optical and mechanical Q factor without further adjustments. Our experiments demonstrate how to maintain high optical and mechanical Q-factors when the tapered fiber is contacted to the microsphere. Other advantages of this packaging system includes simple operation to package, long time stabilization in ambient, even in a vacuum chamber. In addition, the packaged framework is made by the same material silica, thus the whole system is insensitive to temperature changes. Therefore, we believe that our packaged system is promising for future experiments in the cryostat without a 3D translation stage, thus avoiding the complicated imaging system [25].

A. Experiment Setup and Package

Figure 1(a) shows a schematic of the experimental setup. The silica microspheres (diameter about 50 μm) were fabricated by melting the tapered tip of a fiber through a continuous wave (CW) CO$_2$ laser. Generally, the higher mechanical Q factor could be obtained with the appropriate size of the stem [32] and the symmetry structure [33]. As shown in the inset of Fig. 1(a), the mechanical Q factor of the microsphere is near 10^4 with the stem diameter of 7 μm and stem length of 40 μm. The tapered fiber for evanescently coupling was obtained by melting a standard SMF-28 silica optical fiber with a hydrogen flame.

The packaging procedure consists of three steps, which are shown in Figs. 1(b)–1(d). The first step is to fix the acrylate buffer of the glass stem, which supports the microsphere to the center shaft of the C-shape glass plate by a UV glue. After that, the microsphere is fixed to the package framework. Then, a fiber taper is moved to the vicinity of the microspheres by a 3D translation stage. The relative position and distance related to the microsphere are precisely adjusted. During this step, the optical spectrum is monitored simultaneously to ensure an efficient coupling between the fiber taper and optical WGMs. In the last step, the tapered fiber is transferred from...
Fig. 2. Numerical simulated mechanical dissipation due to fiber taper touched with the microsphere. Black and red dots correspond to two mechanical modes with lifted degeneracy due to taper fiber, as shown by the two inset figures. Dashed lines are fitting results.

2. Characterization by NIR Light
To demonstrate the package and verify the effect of tapered fiber touching, we first carried out the experiment at 1550 nm wavelength. Figure 3(a) shows the mechanical linewidth of three different microspheres against the diameter of tapered fiber before and after the touching. The behavior is remarkably reproducible for the different samples. Comparing the linewidth to the untouched microsphere, the increment of the linewidth is about 2 kHz for taper diameter is 800 nm, which agrees well with our simulation results. For a larger diameter of touching fiber tapers, we observed that the linewidth of the sample mechanical mode increases quadratically.
which is consistent with the prediction in Fig. 2. Figures 3(b) and 3(c) show typical power spectrum of the mechanical vibration of sample A with a tapered diameter around 800 nm. The mechanical Q factor degraded to 8770 after touching as compared with 9730 before touching. For other positions, the mechanical Q factor spoiled obviously close to three times.

The mechanisms of intrinsic mechanical dissipation of the microsphere include clamping losses, viscous damping, and materials-induced losses [1,38]. The clamping losses, which are determined by the structure of the supports of the oscillator, especially the ratio between the diameter of the microsphere and its stem in our case, dominate the limit of the mechanical quality of our devices. In addition, the viscous damping, which is caused by interactions with the surrounding gas atoms in our experiment, is almost constant for different spheres and can be fully eliminated in a vacuum chamber ($p < 1$ mbar). Therefore, due to the slightly different geometry of the spheres, the three samples have different mechanical dissipation rates and show different changes of dissipation rate for the same fiber taper size.

It is worth noting that the touched optical Q factors drop drastically when the coupling position is good for the touched mechanical Q, as shown in Figs. 3(d) and 3(e). As we know, the optical coupling rate between the microsphere and the tapered fiber are determined by the evanescent fields overlap and phase matching conditions [39]. For the given wavelength laser, the touched optical Q could be kept high at the appropriate position [36]. Otherwise, the optical Q is spoiled quickly. As previously discussed, the touched mechanical Q could be kept with the tapered fiber diameter of 800 nm. For such size of tapered fiber, the touched optical Q factors could be kept with short wavelength [40]. In order to simultaneously obtain high optical and mechanical Q factors, we run the experiment using the visible light.

3. Characterization by Visible Light

In order to circumvent the dramatic decline of the optical modes, we changed the setup to 780 nm wavelength. The waist of typical 780 nm monomode tapered fiber is approximately 800 nm [41], which should slightly spoil the mechanical Q_m. Figure 4(a) shows the touched mechanical Q_m factor for different positions on the taper while the contact point is on the equator of the sphere. The interval between different positions is roughly 100 μm for the tapered fiber with a diameter of 800 nm, as shown in the SEM image in Fig. 1(a).

![Fig. 3.](image)

(a) Mechanical linewidth versus the tapered fiber diameter for three different samples before and after the touching, respectively. (b) and (c) Power spectrum of the mechanical vibrations before and after the touching for sample A, the position of which the tapered fiber diameter is about 800 nm. (d) and (e) Transmission spectrum of sample A before and after the touching at the same position as (b) and (c). These results were obtained under 1550 nm wavelength laser. Mechanical frequencies of the three samples are $\omega_m/2\pi \approx 62.2$ MHz, 59.3 MHz, 57.6 MHz, respectively.

![Fig. 4.](image)

Distance between equator and taper (μm)

(b) Touched mechanical Q factor of three samples at five positions in which the interval is roughly 100 μm of a typical 780 nm single-node tapered fiber, respectively. (b) Mechanical Q factor of three samples versus the perpendicular distance between the equator of the microsphere and the tapered fiber. (Inset) Touched transmission spectrum of sample A excited by 780 nm laser. Dashed lines indicate untouched mechanical Q factor for guiding.
We also studied the touched mechanical Q_m with different positions along the polar direction on the microsphere, as shown in Fig. 4(b). All results indicate that the Q_m is insensitive to the contact points. During this process, the high optical modes can be observed all the time. A typical transmission spectrum of sample A indicates the Q factor up to 10^8 [inset of Fig. 4(a)]. The asymmetric lineshape in the tail of the transmission shows the ringing phenomenon [42]. The higher Q factor of the optical mode would pull the system in the resolved motion shows the ringing phenomenon [42]. The higher Q factor of the optical mode would pull the system in the resolved motion shows the ringing phenomenon [42].

In conclusion, we propose a method to mount a silica microsphere-fiber coupling system for optomechanical study. We pay close attention to maintain a high mechanical Q factor and simultaneously to maintain an ultrahigh optical Q factor. In the experiment, we discover that the mounted coupling system, which is operated on a 780 nm wavelength, can achieve this goal because 780 nm wavelength can match up well with the waist size of the tapered fiber, which is small enough to reduce the mechanical clamping losses. The experiment in a vacuum is also carried out to verify the practicability of the packaged system. The result shows that the touched mechanical Q factor can be improved without the air damping. This work will not only make the experiments on micocavity optomechanics convenient and low cost in a vacuum and cryostat but pave the way to the sensing and quantum information applications of cavity optomechanical oscillation.

ACKNOWLEDGMENT

The work was supported by the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (grant no. XDB01030200), National Basic Research Program of China (grant nos. 2011CB921200 and 2011CB920020) and the National Natural Science Foundation of China (grant no. 61308079), and Anhui Provincial Natural Science Foundation (grant no. 1508885Q0408), the Fundamental Research Funds for the Central Universities.

REFERENCES

