做科研，非一朝一夕
买器材，应速战速决
Newport数千种优质产品当日发货，更多惊喜尽在PhotonSpeed™光速购！
Digital holography\(^1\) is a powerful technique that enables a three-dimensional (3D) object scene to be recorded as a complex digital hologram. Phase-shifting holography (PSH) and optical-scanning holography (OSH) are the common methods used to obtain complex holograms\(^2\). However, PSH is a coherent technique, whereas OSH can either be configured to operate in a coherent mode or in an incoherent mode. OSH has been applied in many disciplines, such as remote sensing\(^4\), fluorescence microscopy\(^5\), and 3D image recognition\(^6\). In any case, a complex digital hologram obtained by PSH or OSH can be reconstructed with a filter matched to a particular depth to provide an in-focus image that is located at a particular depth distance or a depth section from the hologram. However, apart from the capturing range (which is determined by the setting of the digital holographic system), in general, there is no prior information on the location of the object points in the 3D space. Hence, methods that assume a certain geometrical distribution in the object scene, such as a tiled plane approach\(^8\), are not applicable. The rest of the object scene that does not reside in the reconstructed section will appear as a de-focused haze. An effective method to overcome this problem, which is referred to as “blind sectional image reconstruction,” has been reported in Refs. \(^9,10\). In this approach, filters matched to a range of depth distances are applied to reconstruct the discrete image sections from the hologram at regularly spaced focal distances. Each section corresponds to a physical plane of the object scene that is either empty or housing at least one object point. Next, edge detection and analysis are performed to associate a non-empty object plane with one of the reconstructed sections. This process is known as “focus estimation.” Finally, an in-focus image of the object points represented in each section is reconstructed through an iterative optimization process. Integrating the reconstructed images in all the sections result in a view of the 3D object scene with an extended depth of field. Recently, the optimization process has been simplified with an iterative shrinkage-thresholding algorithm\(^9\). Despite the success achieved in Refs. \(^9–11\), the iterative optimization process is complicated and computationally intensive. A faster, non-iterative method is reported in Ref. \(^12\). Instead of employing the iterative optimization process, the edge analysis technique is applied to extract the in-focus image in each reconstructed non-empty section. The downside of the method in Refs. \(^9,10,12\) is that edge analysis is employed in focus estimation, based on the assumption that the edge count in a local region is weakest when an image area is in focus. However, edge detection and analysis are sensitive to the image content, and the effectiveness is affected by the correct choice of parameters, such as the threshold value for deciding the existence of an edge point. The problem is even more severe in Ref. \(^12\), as a similar strategy is employed to select the in-focus image contents from the correct non-empty sections.

In this Letter, we report a novel technique to reconstruct a 3D image of the object scene with an extended depth of field from a complex hologram generated by OSH. Our method can be divided into 2 stages. First, a sequence of uniformly spaced discrete image sections, each corresponding to a vertical plane of the object scene located at a unique distance from the hologram, is reconstructed. Second, a decision rule is applied to select, for
each pixel in the reconstructed image, a corresponding in-focus pixel from one of the image sections.

Our proposed method is described as follows. To begin with, the following terminology is adopted. Let \( I_R(x, y) \) and \( S_i(x, y) \) denote the reconstructed image (to be determined) and the \( i \)th reconstructed section, respectively. There is a total of \( N \) evenly spaced sections, each corresponding to a vertical plane in the object scene. A pixel in \( S_i(x, y) \) is represented by a complex number given by \( a_i(x, y) + j\beta(x, y) \).

In the first stage of our method, each section \( S_i(x, y) \) is derived with a filter matched to a particular depth, which is done by convolving the complex hologram \( H(x, y) \) with the conjugate of a Fresnel zone plate \( F(x, y; z_i) \) at distance \( z_i \) as

\[
S_i(x, y) = H(x, y) \otimes F^*(x, y; z_i),
\]

where \( \otimes \) denotes convolution over the \( x \) and \( y \) coordinates. The convolution operation can be realized in the frequency domain, which is given by

\[
S_i(x, y) = \text{FT}^{-1}[\tilde{S}_i(\omega_x, \omega_y)] = \text{FT}^{-1}[\text{FT}[H(x, y)] \times \text{FT}[F^*(x, y; z_i)]],
\]

where \( \tilde{S}_i(\omega_x, \omega_y) \) is the Fourier transform of \( S_i(x, y) \), with \( \omega_x \) and \( \omega_y \) denoting spatial frequencies. \( \text{FT}[\bullet] \) and \( \text{FT}^{-1}[\bullet] \) denote the forward and the inverse Fourier transform operations, respectively.

In the second stage, a decision rule is applied to select pixels from the reconstructed sections to \( I_R(x, y) \). The decision is based on the assumption that the intensity of each object point in the scene is positive real. As such, when an object point is reconstructed at the correct focal distance, the real part of its intensity should be positive, and the imaginary part should be close to zero. Although the above criteria can be taken to decide whether a pixel in a section can be accepted in the reconstructed image, it is ambiguous, as sections that are closed to the focal distance is also likely to satisfy such acceptance criteria. In other words, for a given position \((x, y)\), in general, there should be more than one section in which the imaginary part of a pixel is small and can be selected for \( I_R(x, y) \). To overcome this problem, we propose to derive the intensity of each pixel in \( I_R(x, y) \) to be the average value of the corresponding pixels from all the sections that satisfy the acceptance criteria. Mathematically, we have

\[
I_R(x, y) = \frac{K}{M(x, y)} \sum_{i=0}^{N-1} a_i(x, y) d_i(x, y),
\]

where \( d_i(x, y) = \begin{cases} 1 & (|b_i(x, y)| < \text{thres}) \text{AND} (a_i(x, y) \geq 0) \\ 0 & \text{otherwise} \end{cases} \)

is the acceptance criteria, and \( M(x, y) = \sum_{i=0}^{N-1} d_i(x, y) \).

In Eq. (3), \( K \) is a constant to normalize the pixel values of the reconstructed image \( I_R(x, y) \) to the range \([0, 255]\) so that it can be displayed on a typical computer monitor.

The term thres is a threshold value that is assigned a value equal to 0.2 of the peak value of \( S_i(x, y) \). Suppose each pixel \( b_i(x, y) \) in \( S_i(x, y) \) is normalized to the range \([-1, +1]\); thres will be set to 0.2. In general, the reconstructed image becomes progressively blurrier with increasing values of thres, as more pixels from reconstruction planes that are farther from the focused plane will be able to pass the acceptance criteria and average out in Eq. (3). On the other hand, if thres is too small, some pixels in the focused plane may be discarded. From our evaluation, a threshold value between 0.2 and 0.3 is applicable to all the hologram samples.

In the simulations, we have used a standard “Lenna” image, shown in Fig. 1(a), placed 0.1 m from the holographic recording plane. The cosine and sine holograms, which are defined by the real and imaginary parts of the complex hologram, i.e., \( \text{Re}[H(x, y)] \) and \( \text{Im}[H(x, y)] \), are shown in Figs. 1(b) and 1(c), respectively. The result of applying a filter matched to 0.1 m based on Eq. (2) in reconstructing the hologram is shown in Fig. 2(a). It can be seen that an in-focus image can be reconstructed. We then apply our proposed algorithm. A capture range between 0.08 to 0.13 m is employed, which is partitioned into 51 sections, each separated by 0.001 m. The proposed algorithm is applied to reconstruct the complex hologram without prior knowledge of the exact focal distance, and the result is shown in Fig. 2(b). We observe that apart from some slight bluriness, the reconstructed image is similar to the one obtained in Fig. 2(a).

The bluriness is caused by the averaging of corresponding pixels from multiple planes, as expressed in Eq. (3). This effectuates a low-pass filtering on the reconstructed image, which attenuates the high-frequency components of the image. On the bright side, the bluriness also reduces the high-frequency noise that is imposed in the hologram.
Fig. 3. (a) Cosine hologram of the “Star-Heart” pattern and (b) sine hologram of the “Star-Heart” pattern.

Fig. 4. (a) Reconstructed image, at the focal distance 0.099 m (focusing on the Star symbol), based on Eq. (2). (b) Reconstructed image, at the focal distance 0.124 m (focusing on the Heart symbol), based on Eq. (2). (c) Image reconstructed from the “Star-Heart” complex hologram with our proposed method.

Fig. 5. Image reconstructed from the combined “Lenna” and “Star-Heart” complex holograms with our proposed method.

Table 1. Computation Time Involved in Each Stage of the Proposed Algorithm, N = 51

<table>
<thead>
<tr>
<th>Description</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier transform of $H(x, y)$, 512 × 512 pixels</td>
<td>2 ms</td>
</tr>
<tr>
<td>$\tilde{S}_{\tilde{z}}(\omega_x, \omega_y)</td>
<td>_{0 \leq z &lt; N}$</td>
</tr>
<tr>
<td>$= \text{FT}[H(x, y)] \times \text{FT}[F^*(x, y, z_i)]$</td>
<td></td>
</tr>
<tr>
<td>Inverse fourier transform of $\tilde{S}_{\tilde{z}}(\omega_x, \omega_y)</td>
<td>_{0 \leq z &lt; N}$</td>
</tr>
<tr>
<td>Selection of pixels from sections (Eq. (3))</td>
<td>Negligible*</td>
</tr>
<tr>
<td>Total</td>
<td>$\approx 2(N + 1)$ ms</td>
</tr>
</tbody>
</table>

*Significantly less than 2 ms.
and imaged in-focus simultaneously, the increase of the depth of field is about 2.5 cm/2.02 mm ≈ 12 times, which is impressive for simple binary objects. The proposed algorithm should be tested against more realistic, diffusely reflecting objects in the future.

This work was partially support by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2015-R0992-15-1008) and supervised by the IITP (Institute for Information & communications Technology Promotion).

References