We propose a simple integrated narrowband filter consisting of two grooves on the surface of a slab waveguide. Spectral filtering is performed in transmission at oblique incidence due to excitation of an eigenmode of the structure localized at a ridge cavity between the grooves. For the considered parameters, zero reflectance and unity transmittance are achieved at resonant conditions. The width and location of the transmittance peak can be controlled by changing the widths of the grooves and of the ridge, respectively. The proposed filter may find application in waveguide-integrated spectrometers.

OCIS codes: (130.7408) Wavelength filtering devices; (140.3948) Microcavity devices; (130.3120) Integrated optics devices; (130.2790) Guided waves; (050.5745) Resonance domain; (050.6624) Subwavelength structures.

https://doi.org/10.1364/PRJ.6.000061
a horizontal symmetry plane \(z = z_p \) [Fig. 1(a)] [15,16]. In this case, the structure corresponds to a so-called W-type waveguide [17]. At a significantly large cladding thickness \(h_{cl} \), the leaky mode of the W-type structure can be approximately described by the dispersion relation of the modes of a slab waveguide, which becomes exact at infinite \(h_{cl} \). In this case, the excitation of the mode of the structure in Fig. 1(a) will occur in the vicinity of the frequency \(\omega = \omega_0 \) and the tangential component \(k_x = k_{x,0} \) of the wave vector, which satisfy the dispersion relation of a slab waveguide [18]. Therefore, at resonant conditions the reflection coefficient will vanish at certain \(\omega \) and \(k_x \) values close to \(\omega_0 \) and \(k_{x,0} \), respectively. It is worth noting that the quality factor of the resonance (the width of the resonant transmission peak) is determined by the thickness of the cladding layer \(h_{cl} \) [13].

The analysis presented indicates that the structure presented in Fig. 1(a) may be used as a spectral or spatial (angular) narrowband transmission filter. However, despite the simple geometry of the structure, it has several disadvantages concerning its practical use. In particular, due to the condition \(n_{sup} > n_{cl} \), such a filter requires the use of two high-index prisms for incoupling and outcoupling of the incident optical beam, and thus cannot be highly integrated.

At the same time, this structure can serve as a prototype for designing a simple planar filter integrated into a slab waveguide. The waveguide considered has the following parameters: a dielectric permittivity and thickness of the core layer of \(\varepsilon_f \) and \(w_{inc} \), respectively, and dielectric permittivities of the claddings of \(\varepsilon_a \) and \(\varepsilon_l \). As a planar analogue of the three-layer structure of Fig. 1(a), we propose to use the structure consisting of two grooves on a waveguide surface shown in Fig. 1(c). The length of the grooves and of the ridge between them is equal to the thickness of a layer of the conventional structure for free-space radiation.

Let us denote by \(w_g \) and \(w_r \), the thicknesses of the waveguide in the groove and ridge regions, respectively (\(w_g < w_r \)). At a fixed frequency \(\omega = \omega_0 \), the effective refractive index of the guided mode \(\eta_{eff} \) is a function of the core layer thickness \(w \). Thus, the proposed planar structure can be considered as a direct analogue of a conventional structure with the refractive indices \(n_{sup} = n_{eff}(w_{inc}) \), \(n_{cl} = n_{eff}(w_g) \), \(n_{wg} = n_{eff}(w_r) \) [Fig. 1(b)]. In all the examples considered, \(w_r = w_{inc} \), so \(n_{wg} = n_{sup} \). Since the function \(n_{eff}(w) \) is monotonically increasing [18], \(n_{wg} = n_{sup} > n_{cl} \).

3. RESULTS AND DISCUSSION

Let us numerically study the performance of the proposed two-groove planar filter (TGPF). In all the simulations, the following parameters were used: free-space wavelength \(\lambda_0 = 630 \text{ nm} \), \(\varepsilon_f = 3.32^2 \) (GaP), \(\varepsilon_l = 1.45^2 \) (fused silica), \(\varepsilon_a = 1 \), \(w_{inc} = 100 \text{ nm} \). At these parameters, the slab waveguide is single-mode. The TGPF consists of two grooves with a depth of \(w_{inc} / 2 \) (so that \(w_g = w_{inc} / 2 = 50 \text{ nm} \)) and a ridge between them. In the case of TE polarization, the effective refractive index of the incident guided mode and the mode in the ridge region is \(\eta_{eff}(w_{inc}) = n_{eff}(w_r) = 2.7563 \), while the effective refractive index in the groove region is \(n_{eff}(w_g) = 2.19 \).

The resonances occurring in the proposed TGPF are associated with the excitation of a leaky eigenmode localized at the cavity corresponding to the central ridge and propagating along the \(x \) axis. In this case, this mode is close to the mode of a photonic wire waveguide. The quality factor of the resonance (the width of the resonant peak) is determined by the width of the grooves \(h_{cl} \). To illustrate this, we calculated the angular and wavelength transmission spectra of the investigated structure at two groove widths, \(h_{cl} = 400 \text{ nm} \) and \(h_{cl} = 600 \text{ nm} \) (Fig. 2). As shown below, at these groove widths the angular and spectral widths of the resonant peaks differ by approximately a factor of

Fig. 1. Geometry of (a) a conventional three-layer resonant structure and (c) the proposed two-groove planar filter, and (b) the refractive (effective refractive) index profile of the structure. The values in (b) and dimensions in (c) correspond to one of the examples described in the text. I, R, and T denote incident, reflected, and transmitted waves, respectively.

Fig. 2. (a) Angular and (b) wavelength TGPF transmission spectra at \(h_{cl} = 400 \text{ nm} \) (dashed blue curves) and \(h_{cl} = 600 \text{ nm} \) (solid red curves). The insets show the FWHM of the resonant peaks versus \(h_{cl} \).
10. The width of the ridge is fixed and equals $h_{wg} = 100$ nm. The spectra were calculated using an in-house implementation of the aperiodic rigorous coupled-wave analysis (aRCWA) technique [19]. RCWA, also called the Fourier modal method, is an established numerical technique for solving Maxwell’s equations. The angular spectra in Fig. 2(a) were calculated at a fixed wavelength $\lambda_0 = 630$ nm. The transmittance reaches unity at the angles of incidence $\theta_1 = 55.201^\circ$ (at $h_{cl} = 400$ nm) and $\theta_2 = 55.226^\circ$ (at $h_{cl} = 600$ nm). The full widths at half maximum (FWHMs) of the resonant transmittance peaks amount to $\Delta \theta_1 = 0.091^\circ$ and $\Delta \theta_2 = 0.0092^\circ$ at $h_{cl} = 400$ nm and $h_{cl} = 600$ nm, respectively. The dependence of the FWHM of the resonant peak on the width h_{cl} is shown in the inset. Let us note that the angles of incidence $\theta_{1,2}$ depend on the thickness of the waveguide in the groove regions w_g. With a decrease in w_g [decrease in $n_{eff}(w_g)$], the angles $\theta_{1,2}$ also decrease, and at $w_g = 0$ [$n_{eff}(0) = 1$ in the groove regions], they approach 33°.

It is worth noting that in the case of incidence of a TE-polarized mode at angles of incidence greater than $\theta > 46.34^\circ$, there is no out-of-plane scattering and polarization conversion in the structure. Indeed, one can show that at $\theta > 46.34^\circ$ the slab waveguide does not support any propagating TM-polarized modes with the propagation constants $k_{TM} > k_{x,TE}$, where $k_{x,TE} = k_0 n_{eff}(w_{wg}) \sin \theta$ and $k_0 = 2\pi/\lambda_0$ is the tangential component of the wave vector of the incident TE-polarized mode. Moreover, the plane waves under and over the structure (in the regions with dielectric permittivities ε_i and ε_o with the x wave vector component $k_{x,TE}$) are evanescent. Thus, the energy of the incident TE-polarized mode will be divided only between two modes (reflected and transmitted) having the same polarization. Due to this, zero reflectance and unity transmittance are achieved in the structure at resonant conditions [15].

The wavelength spectra in Fig. 2(b) were calculated at the angles of incidence θ_1 and θ_2, taking into account the dielectric permittivity dispersion of the core layer. FWHM values of the resonant peaks are $\Delta \lambda_{1,1} = 3.0$ nm (at $h_{cl} = 400$ nm) and $\Delta \lambda_{1,2} = 0.3$ nm (at $h_{cl} = 600$ nm). Similar to Fig. 2(a), the inset in Fig. 2(b) shows the FWHM of the peak versus the width h_{cl}.

To further investigate the resonances associated with the transmittance peaks in Fig. 2, we calculated complex-wavelength eigenmodes of the TGPF corresponding to the poles of the transmission coefficient $T(\lambda)$ using the method presented in Ref. [20]. The obtained values $\lambda_{1,1} = 629.880 + 1.663i$ nm at $h_{cl} = 400$ nm and $\lambda_{2,2} = 629.932 + 0.162i$ nm at $h_{cl} = 600$ nm are in the vicinity of the wavelength $\lambda_0 = 630$ nm. Since the spectra in Fig. 2(b) have a Lorentzian line shape, the values $\Delta_1 = 2\text{Im}(\lambda_{1,1}) = 3.326$ nm and $\Delta_2 = 2\text{Im}(\lambda_{2,2}) = 0.324$ nm can be used to estimate the widths of the resonant peaks at half maximum. These values are in good agreement with the $\Delta \lambda_{1,1}$ and $\Delta \lambda_{1,2}$ values given above. Figure 3 shows the distributions of the $|H_y|^2$ component of the electromagnetic field at $h_{cl} = 400$ nm in the case of diffraction of the TE-polarized mode on the TGPF at three wavelengths: 600 nm (away from the resonance), 620 nm (closer to the resonance), and 630 nm (at the resonance). The angle of incidence is fixed at $\theta_1 = 55.201^\circ$. The distributions are normalized by the maximum $|H_y|^2$ value of the incident guided mode at $h_{cl} = 400$ nm and $\theta = \theta_1$ for the free-space wavelengths (a) 600, (b) 620, and (c) 630 nm.

![Fig. 3. Distributions of the $|H_y|^2$ component of the electromagnetic field in the TGPF normalized by the maximum $|H_y|^2$ value of the incident guided mode at $h_{cl} = 400$ nm and $\theta = \theta_1$ for the free-space wavelengths (a) 600, (b) 620, and (c) 630 nm.](image-url)

Fig. 4. Calculated transmittance spectra at varying ridge widths h_{wg} ranging from 87.5 nm (leftmost peak) to 112.5 nm (rightmost peak) in steps of 2.5 nm. Colors of the curves correspond to the resonant wavelengths at each ridge width value.
subnanometer spectral width and Lorentzian line shape. In practical applications, achieving a nearly rectangular transmittance peak with a flat transmission band and steep slopes is highly desirable [11]. In PSBG-based filters, this problem is solved by introducing several properly chosen phase-shift regions. A similar approach can be applied for the considered TGPF. As a simple example, let us consider a filter composed of two concatenated TGPFs with \(h_{\text{wg}} = 100 \text{ nm} \) and \(h_f = 600 \text{ nm} \) separated by an additional phase-shift ridge with a width of 198 nm (inset in Fig. 5). Following the approach used in Ref. [25] for the analysis of reflectance spectra of stacked PSBGs, the width of the phase-shift ridge was chosen so that the reflectance spectrum of the structure possesses a so-called second-order zero. In terms of the transmittance spectrum, this leads to a shape of the resonant peak that is significantly closer to a rectangle (Fig. 5).

The calculations [20] show that the concatenated structure supports two closely located modes with the complex wavelengths \(\lambda_e = 629.896 + 0.082i \text{ nm} \) (even mode) and \(\lambda_o = 630.065 + 0.082i \text{ nm} \) (odd mode). The even and odd modes of the concatenated structure correspond to the in-phase and out-of-phase excitation, respectively, of the individual TGPFs’ modes. Note that the complex wavelengths satisfy the condition \((\text{Re}\lambda_e - \text{Re}\lambda_o)^2 \approx 4\text{Im}\lambda_e \cdot \text{Im}\lambda_o \), which provides the so-called flat-top resonance line shape [26]. The quality factors of the modes of the concatenated structure are twice the quality factor of the mode of the initial structure (\(\text{Im}\lambda_e = \text{Im}\lambda_o \approx \text{Im}\lambda_{1/2} / 2 \)). As the result, the FWHM value for the concatenated structure decreases, and in our example amounts to 0.22 nm instead of 0.3 nm for the initial structure. A further improvement in the peak shape can be achieved by increasing the number of concatenated TGPFs, similar to the approach used for PSBG-based filters [11].

4. CONCLUSION

In summary, in the present work we proposed a simple narrow-band transmission filter consisting of two grooves on the surface of a slab waveguide and intended for spectral filtering of optical radiation propagating in the waveguide. The spectral filtering is performed due to the resonant excitation of an eigenmode of the structure localized at the cavity corresponding to the ridge between the grooves. On the basis of rigorous numerical simulations, the ability to control the spectral width and location of the transmittance peak by changing the widths of the grooves and the ridge between them was demonstrated. Moreover, for the parameters considered, there is no unwanted parasitic scattering and polarization conversion in the filter. The proposed TGPF can be used for the creation of planar analogues of LVFs for waveguide-integrated spectrometers.

Funding. Russian Science Foundation (RSF) (14-19-00796); Russian Foundation for Basic Research (RFBR) (15-07-00548, 16-29-11683).

Acknowledgment. The investigation of the single TGPFs was funded by the Russian Science Foundation, and the investigation of the concatenated TGPF structure and the mode analysis were funded by the Russian Foundation for Basic Research.

REFERENCES