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High-order harmonic generation originated from zigzag graphene nanoribbons (ZGNRs) induced by intense laser
pulses is investigated theoretically. During the interaction between the intense mid-infrared laser and the ZGNR,
we find that localized edge states mainly contribute to the generation of the low-order harmonics, while cutoff
harmonics result from the other confined states. Our result shows that the edge-state effect of ZGNRwith narrow
width can enhance the conversion efficiency of low-order harmonics, rather than the higher-order harmonics
extended to the cutoff region.
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The extreme nonlinear phenomenon of high-order har-
monic generation (HHG) has been studied extensively
since its first experimental discovery[1–3]. According to
the semiclassical three-step model of atomic HHG, an elec-
tron first tunnel ionizes out of the Coulomb potential
barrier. Then, it gains extra kinetic energy when acceler-
ating in the external field. Finally it emits a high-energy
harmonic photon when recombining with its parent ion[4].
The supercontinuum region of the HHG plateau can be
used in the generation of isolated attosecond pulses, which
is intended for probing ultrafast atomic and molecular
motion[5–7]. However, advances in attosecond science to
date mostly focus on HHG with rare gases[8–12].
Since the first, to the best of our knowledge, experiment

of solid-state HHG[13,14], both experimental[15–18] and theo-
retical work[19–21] of different solid-state systems have been
done to study the essence of HHG from solids. It is widely
accepted that HHG in solids originates from two channels,
namely interband and intraband currents. Like the atomic
HHG three-step model, the mechanism of interband
current can be explained by a recombining model: an
electron–hole pair is created from the interband transition,
and then electrons and holes are accelerated by the laser
field. When an electron and a hole recombine together, a
high-order harmonic photon will be emitted. The other
solid-state HHG mechanism is intraband current, which
originates from Bloch oscillations within the same band[22].
Recently, there has been a growing interest in studying

HHG from different crystal nanostructures.McDonald et al.
demonstrated that the HHG efficiency increases due to the
quantum confinement in a model quantum nanowire[23].
Cox et al. studied plasmon-assisted HHG originating
from doped graphene nanostructures and indicated that
localized plasmons give rise to the HHG conversion effi-
ciencies[24]. Due to the nanoscale confinement effects,

HHG has been reported to be efficiently enhanced in these
nanostructures.

Besides, studying the electronic properties of nanoscale
graphene systems has attracted much attention in favor
of developing next-generation electronic devices. HHG
in two-dimensional (2D) material graphene has been
intensively studied both theoretically[25–32] and experimen-
tally[33–36]. However, localized quantum effects on the HHG
generated from nanoscale graphene systems interacting
with a high-intensity laser field have not been investigated
yet. The broken translational symmetry at edges and
boundaries of 2D atomic materials like graphene and tran-
sition metal dichalcogenides leads to exceptional physical
phenomena and applications in nonlinear optics[37–40].
Armchair and zigzag edges are the two kinds of graphene
edges, which have a 30° difference in their orientation in a
single-layer graphene sheet. Specifically, the zigzag gra-
phene edge exhibits distinguished localized electronic
states, which the armchair edge does not possess[41,42].
Due to the confinement of finite-sized nanostructure of
zigzag graphene nanoribbons (ZGNRs), the electron wave
function may be affected by the quantum localization of
edges and introduce many brand-new strong field physical
phenomena.

In this work, HHG spectra originating from the interac-
tion of ZGNR with intense laser pulses have been theoreti-
cally studied by numerically solving the time-dependent
Schrödinger equation (TDSE). In this work, because
the pulse duration is about 100 fs for the 3.6 μm laser
pulse, which is much shorter than the electron–electron
(e-e) scattering time[31,36], we can ignore this process in
the simulation. Furthermore, for simulations including
the e-e scattering process, one needs to adopt the density
matrix model such as solving the semiconductor Bloch
equation (SBE)[22]. The total number of conduction bands
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is N , which is the number of zigzag carbon lines in ZGNR.
As shown in Ref. [15], Wu et al. also used TDSE in the
velocity gauge to simulate the HHG process in a model
band. They considered that the TDSE model is valid
enough for laser wavelengths between 2 and 5 μm.
Similarly, we alter the wavelength of the incident laser
from 800 nm to 3.6 μm, and the peak intensity is chosen
to be 1TW∕cm2. The HHG spectra are highly dependent
on the width N of ZGNR. We also investigate the distinct
edge-state effect on the low-order harmonics yield of
ZGNR induced by mid-infrared (MIR) pulses.
To investigate the high-order harmonics generated by

ZGNR, we use the TDSE in the velocity gauge to simulate
the interaction between the intense laser pulses and
ZGNR[43,44]. In this model, the Schrödinger equation can
be written as

iℏ
∂
∂t

jψkðx; tÞi ¼
�
H 0 þ

e
m0

AðtÞpx
�
jψ kðx; tÞi; (1)

where e and m0 are the charge and mass of the free elec-
tron. AðtÞ ¼ E0∕ω0 sin2ðπt∕TÞ cos ðω0tÞ is the vector
potential of incident laser pulses, where T is the total time
of the simulation. For all simulations in this work, T is 16
optical cycles. px ¼ −iℏ∂∕∂x is the momentum operator.
For each value of the quasi-momentum k, the electron
wave function is represented on the basis of Bloch states
jφn

k ðxÞi, n is a band index, and k is the electron wave vec-
tor, which can be evaluated by solving the single-electron
stationary Schrödinger equation with an unperturbed
Hamiltonian H 0. Then, the total electron wavefunction
in Eq. (1) can be written as

jψkðx; tÞi ¼
XNmax

n¼1

αnk ðtÞjφn
k ðxÞi; (2)

where Nmax is the plane wave number. Substituting
ansatz Eq. (2) into Eq. (1), the time-dependent coeffi-
cients αnk ðtÞ are evaluated by solving the following coupled
differential equation:

iℏ
∂αqkðtÞ
∂t

¼ Eq
kα

q
kðtÞ þ

e
m0

AðtÞ
XNmax

l¼1

pqlk α
l
kðtÞ; (3)

where pqlk ¼ hφq
k jpx jφl

ki is the momentum matrix. To ob-
tain the HHG, we need to calculate the electron current
induced by the laser field in the ZGNR. The single-
electron contributions to the current density over a unit
cell can be presented as follows:

jkðtÞ ¼ −
e
m0

1
Ω

Z
Ω
dxfRe½ψ�

kðx; tÞpxψkðx; tÞ�

þ eAðtÞjψkðx; tÞj2g; (4)

where Ω is the volume of a unit cell of ZGNR. With the
substitution of Eq. (2), the single-electron current density
can be presented as follows:

jkðtÞ ¼ −
e
m0

(
Re

(X
q;l

½αqkðtÞ��αlkðtÞpqlk
)
þ eAðtÞ

)
; (5)

and the total current density can be integrated as jðtÞ ¼R
jkðtÞdk: Thus, the intensity of the harmonic emission

SðqωÞ written as Eq. (6) at the qth harmonic frequency
qω is dependent on the absolute square of the Fourier
transform of the total current density denoted as
JðqωÞ ¼ qω

R
∞
−∞ jðtÞ expð−iqωtÞdt:

SðqωÞ ¼ jJðqωÞj2: (6)

For ZGNR, with tight-binding (TB) approximation,
the single-electron stationary Schrödinger equation can
be written as

H 0jφn
k ðxÞi ¼ En

k jφn
k ðxÞi: (7)

Although the simple TB model cannot describe the real
ZGNR accurately, in our work, we focus on discussing the
feature of the harmonic spectra, the contribution of differ-
ent electron states, etc. We choose this TB model because
it has been carefully investigated, discussed, and proved to
be valid[41,45,46]. It is simple enough to help us in discussing
and understanding the contribution of different electronic
states in ZGNR, so we use it to calculate the band struc-
ture of ZGNR and analyze the contribution of the different
Bloch states to the generation of high harmonics. The
band structure of ZGNR composed of N zigzag carbon
lines can be calculated by numerically diagonalizing the
following tridiagonal 2N × 2N Hamiltonian matrix with
alternating off-diagonal elements[45,47]:

H 0 ¼

0
BBBBBBBBBBB@

0 2cos
�
ka
2

�
0 0 0 � � �

2cos
�
ka
2

�
0 1 0 0 � � �

0 1 0 2cos
�
ka
2

�
0 � � �

0 0 2cos
�
ka
2

�
0 1 � � �

0 0 0 1 0 � � �
..
. ..

. ..
. ..

. ..
. ..

.

1
CCCCCCCCCCCA
:

(8)

After diagonalizing the unperturbed Hamiltonian ma-
trix H 0, we can get ZGNR’s band structure and the
momentum matrix further. As Fig. 1(a) depicts, N defines
the number of zigzag carbon lines in ZGNR, and a ¼
2.46 a:u: is the lattice constant of graphene. Figs. 1(b)
and 1(c) show the band structure of ZGNR with N ¼ 4
andN ¼ 15, respectively. As stated in Ref. [41], the energy
bands present some typical features, e.g., the Dirac points
of the 2D graphene are mapped into k ¼ �2π∕ð3aÞ, and
there are two partially flat degenerate bands with zero
energy between the Dirac points and the border of the
Brillouin zone (BZ). The corresponding electronic states
are mainly located at the edges, and the bands are highly
degenerate at the borders of the BZ.
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Wemark the bands with different numbers in Figs. 1(b)
and 1(c). For the bands above the Fermi level (0 eV in the
figures), they are n ¼ 1; 2;…. For the bands below the
Fermi level, they are the opposite. As shown in a previous
work[46], the ZGNR has some very special features such as
the edge states. In Figs. 1(b) and 1(c), the Bloch states
between the border of the BZ (jkaj ¼ π) and the jKj points
(jkaj ¼ 2π∕3) on bands n ¼ �1 indicate the edge states,
while all the others represent the confined states. These
edge states mean strongly localized states in the flat
bands. We tend to see its effect on the generation of
high-order harmonics. In all our numerical simulations,
601 points are used for the k vector (total BZ). Initially,
the electron is set on the n ¼ −1 band (the upmost valence
band). Only the bands with positive n and n ¼ −1 are
considered. As shown in Ref. [47], the transition be-
tween the adjacent dashed–solid bands is forbidden, which
means the transition between the solid line bands and the
dashed line bands is forbidden. As depicted in Figs. 1(b)
and 1(c), for N ¼ 4, although all the bands of n > 0 are
considered as conduction bands, electrons can only be
excited to n ¼ 2; 4 bands [blue solid lines in Fig. 1(b)].
For N ¼ 15, electrons can only be excited up to n ¼
2; 4; 6; 8; 10; 12; 14 bands [blue solid lines in Fig. 1(c)] be-
cause of the forbidden transition.
First, Figs. 2(a) and 2(b) show the typical harmonic

spectra generated by lasers with different wavelengths
under the intensity of 1TW∕cm2. For the case of 800 nm,
the harmonic spectrum represents the exponential de-
crease as the traditional perturbative harmonics. As de-
picted in Fig. 2(c), the cutoff energy of the harmonic
spectra shows a linear dependence on the wavelength,
which is in good agreement with a previous research

work[48]. The clear plateau can be seen in Fig. 2(b), which
indicates the strong field effect.

The main purpose of this work is to investigate the con-
tribution of the edge states to ZGNR’s HHG. To achieve
this, we can initially set the electron population between
k ¼ �2π∕3 to be zero in the simulation. In such a case,
only localized edge states in the upmost valence band
are considered in the calculation, while all the other states
in the valence bands are excluded. Then, we can compare
its generated harmonic spectra with the normal harmonic
spectra, where electrons in the upmost valence band
between k ¼ �π are populated initially. In this part, we
set the laser intensity to be 1TW∕cm2 and the laser wave-
length to be 3600 nm. In the simulations, all of the states
in the conduction bands are involved in the process of
HHG. With the increase of the width N , the number of
the conduction bands will be larger. Figure 3 shows the
harmonic spectra of ZGNRs with different widths, where
the blue solid curve denotes the normal harmonic spec-
trum, and the red dashed curve denotes the contribution
of the edge states in each figure.

For the low harmonics (below ninth harmonic), the red
dashed curves are mostly higher than the blue solid curves.
It is the result of interference with the electrons initially
localized in the region of k < jKj, which decreases the gen-
eration of the low-order harmonics in the normal harmonic
spectra. It is notable that the red dashed curves still show
a well-defined plateau region when N < 4. In these cases,
although the ratio of edge states is less than that of larger
N , electrons initially localized in the region of k > jKj
contribute to the HHG process mainly. Until the N is
large enough, e.g., larger than 15, they become almost the
same. As we know from the previous work[41], the flatness
index of the zero-energy bands in ZGNR increases with the
number N at first, reaches the highest value at N ¼ 7,
and then decreases. This means the low-order harmonics
are mainly generated by the edge states. Because when
N ¼ 2 orN ¼ 3, the bands are not flat enough, so the elec-
trons will not be localized in the region of k > jKj, and
thus the edge-state effect is small.

Fig. 1. (a) Crystal structure and unit cell of ZGNR composed of
N zigzag carbon lines. (b), (c) Band structure of ZGNR whose
width is 4 and 15 used in our simulations.

Fig. 2. (a), (b) Intensity variation of HHG with the pump
laser wavelength ranging from 800 nm to 3600 nm. The ZGNR
width N is four and the pump laser intensity is 1TW∕cm2.
(c) Wavelength linear dependence of the cutoff energy in
ZGNR’s HHG.

Fig. 3. (a)–(f) High harmonic spectra of ZGNR with different
widths (N ¼ 2, 3, 4, 7, 10, 15), where the blue solid curves
denote the normal harmonic spectra, and the red dashed curves
represent the harmonic spectra contributed only by the edge
states.
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For the harmonics in the cutoff region (around the 25th
harmonic), the situation is different. When N is small, the
cutoff harmonics are weak for both curves. With the in-
crease of ZGNR width (N number), the blue solid curves
become increasing, but the red dashed curves decrease fur-
ther. This means, for narrow ZGNR, the efficiency of the
cutoff harmonics is small. With the increase of the N num-
ber, the cutoff harmonics can be produced efficiently, but
it is mainly from the confined states, rather than the edge
states. To make it clear, we choose several harmonics to
compare their yield, as shown in Fig. 4.
Figure 4 shows the yield of the 3rd, 5th, 15th, and 25th

harmonics, depending on the ZGNR width. They are gen-
erated by the 3600 nm MIR laser, as shown in Fig. 3. We
integrate the harmonic spectra between adjacent harmon-
ics of each harmonic, e.g., integrating the harmonic spec-
tra between the second and fourth harmonics to represent
the yield of the third harmonic. The solid curves marked
with circles are the normal harmonics, while the dashed
curves marked with diamonds are the harmonics gener-
ated only by edge states. For all harmonics at small N ,
the solid curves and the corresponding dashed curves
almost have the same value. But for low-order harmonics,
e.g., third and fifth, the dashed curves will be higher than
the solid curves between N ¼ 4 and N ¼ 10. Combining
with the discovery of Ref. [41] where the effect of edge
states is maximal only when N ¼ 7, we also find that
the yield of the harmonics generated from the edge states
seems to be similar with that from other confined states for
ZGNR widths N ¼ 2; 3; 4. For these ZGNR widths, the
ratio of edge states is smaller than in the case N ¼ 7 ac-
cording to Ref. [41]; thus, the effect of edge states is not
obvious. In addition, around N ¼ 7, for the low-order har-
monics (the third and fifth harmonics), the difference be-
tween the normal harmonic yield and harmonic yield
generated by edge states is relatively large, so it means
that the contribution of edge states is the main one. With
the increase of harmonic order, up to the 15th harmonic,

the two curves are close, so that is to say the contribution
of edge states is almost equivalent to that of confirmed
states. For the higher harmonic orders, the contribution
of the edge state can be completely ignored. Thus, edge
states of ZGNR mainly contribute to the generation of
low-order harmonics. When the numberN becomes larger,
their yield will become comparable again. For the 15th
harmonic in the middle region of the spectra, the dashed
curve is larger than the solid curve, while it becomes the
opposite when N > 9. But for the 25th harmonic in the
cutoff region, the solid curve is almost always larger than
the dashed curve for more than one order of magnitude.

In conclusion, we have investigated HHG in ZGNR
driven by a strong laser field from near-infrared to MIR
wavelengths based on one-dimensional TDSE. The simu-
lated HHG spectra show a high relevance with the width
of ZGNR. We demonstrate that low-order harmonics are
mainly generated by the edge states of ZGNR, but the
cutoff harmonics are mainly produced by the confined
states for the MIR laser at the 3600 nm wavelength
and 1TW∕cm2 intensity. Due to the relative high density
of electronic states near the Fermi energy, edge states con-
fined in the flat band regions of ZGNR will be an effective
way to enhance the low-order harmonics.
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