再生脉冲放大器与高功率激光装置的发展

孟绍贤
(中国科学院上海光学精密机械研究所, 上海201800)

提要 讨论了再生脉冲放大器的基本理论，描述了由再生发生器到再生放大器的发展过程，指出再生放大器在高功率激光装置中的重要作用。

关键词 再生脉冲发生器，噪声脉冲，再生脉冲放大器

1 引言

Nova 以前, 所有高功率激光系统, 基本上采用逐步放大器方法的办法来获得高功率激光输出[1]。随着激光装置规模的扩大，不仅需要重复性装置十分庞大，激光器转换效率极低，造价十分昂贵，调整和维护都十分困难。

随着再生放大器技术的发展, 大型普克尔斯盒电光开关的制成, 以及空间滤波器的利用, 解决了以上困难, 有可能在花费较低的情况下, 制成大型高功率激光系统。

本文从历史发展的角度，介绍再生放大器技术的发展过程，为今后大型激光器研制提供一个可供参考的思维方式。

2 微波雷达脉冲列的产生

随着雷达技术、定位技术的发展, C.C. Cutler 研究了再生脉冲发生器, 这个脉冲发生器可以发射微波脉冲序列[2]。它的电路方框图如图1。这是一个反馈回路，它包括放大器、滤波器、延迟器和一个非线性元件——扩展器。这个扩展器对高信号电平比低信号电平有小的减小。当回路增益超过1时，一个脉冲绕着回路不断循环，每次输出端输出一个脉冲。显然，这样脉冲除非干扰噪声和畸变的影响，否则将逐渐变坏。

![图1再生脉冲发生器基本元件](attachment:image)

称为扩展器的这个非线性元件主要作用是: 1) 增强低信噪比的峰值部分, 压低较低信噪比部分; 2) 频率噪声和反射; 3) 压窄脉冲直到由电路频率响应范围所限制的脉冲宽度。再生发生器输出的脉冲速率等于回路延迟的倒数，脉冲宽度等于整个系统带宽的倒数，中心频率由滤波器的频率确定。用这种方法，Cutler 制造了一个带宽4 GHz 的微波脉冲。下面将讨论这种脉冲的基本性质。

假如滤波器具有高斯型特性，扩展器遵循同信指数规律，则可得到一个高斯型脉冲列。

收稿日期: 1998—12—30
脉冲速率等于中间频带回路延迟倒数。脉冲长度由滤波器带宽和滤波器的中心频率确定。此外，可以发现相邻脉冲在射频位相中不必相同。通常用相对应的脉冲时间测量位相，从一个脉冲到另一个脉冲位相是变化的，如图2。这个变化我们称为“无线电频率进动”，如用脉冲速率相乘，称为“进动率”。这个进动率等于反馈回路中脉冲射线和过时位相乘以加上由于回路位相所引起的贡献。

脉冲列给出一个间隔等于脉冲速率分段的频率成分的线状谱，而包络具有像滤波器相同的特性。

在反馈回路中位相的非线性引起整体脉冲频谱的二次矩引起频率线性扫描。这样脉冲称为频率线性扫描脉冲，或线性调频脉冲，亦称为啁啾脉冲。一个大的位相差均能长脉冲，在这个范围内，通过宽度为脉冲长度倒数几倍的给出瞬频频扫描。

自动增益控制作用是保持脉冲为这样一样个幅度，哪里脉冲的回路增益为1。在通常方式下这可以做到，从脉冲输出得的直流电压反馈给放大器或扩展器，以正确的极性降低增益。倘若自动增益控制运转的时间常数长于相应的脉冲周期，则在所有时间回路中增益都小于1，而不只是在峰值。结果，两个脉冲同时启动，任何稍微不平衡，例如由于噪声波动，在扩展器给出较大的一个有高的增益，而另一个则小。结果，不平衡增长，直到重复循环，较小的脉冲很快地消失。

这个分析基于高斯脉冲，但显然，回路的滤波特性和非线性决定脉冲形状。图表程序表明，用一个切片机代替扩展器(扩大低电平和限制高电平)，导致平顶脉冲，长度由自动增益控制确定。在这种情况下，最大电平由切片机的限制电平控制，增益控制仅在切片机增量内有效，这个作用使得脉冲长度给出一个恒定的平均输出功率。上述分析促进了窄脉冲雷达的发展，从而加大了雷达的探测距离。

3 光再生脉冲发生器

A. J. DeMaria 利用 Cutler 再生脉冲发生器解释了固体激光器染料锁模过程[4,5]。

一个通常激光器具有(除扩展器元件外)运转在微波区域内再生脉冲发生器的所有基本元件，激光介质可作为一个放大器，Fabry-Perot 共振腔和激光跃迁的线宽可作为滤波器。光脉冲在反射镜之间行进两次要求的时间为回路的延迟时间。电子扩展器电路元件的光学相似物是用作激光 Q 开关的可饱和吸收体，如图3。

可饱和吸收体的基本要求：1) 在激光波长有一个吸收线；2) 其线宽等于或大于激光介质线宽；3) 染料恢复时间短于回路延迟时间。

Cutler 描述的微波再生发生器中的频率扫描或“啁啾”，在 Nd·玻璃锁模激光器中也
观察到E. B. T reacy采用具有负“啁啾”的光栅对，使染料锁模Nd:玻璃激光器输出脉宽 4×10^{-12} s 的脉冲压缩到 4×10^{-13} s，从而证实了锁模激光器输出脉冲具有正“啁啾”[6]。进一步证实了光再生放大器与微波再生放大器输出脉冲的相似性。主动锁模激光器也是一个光再生脉冲发生器，其调制器起着扩展器的作用。

4 光再生放大器

再生脉冲发生器是一种自激振荡器。由此想到如将外来信号注入一光学谐振腔中，进行多次放大，当达到一定信号水平时，再由腔中倒空出来，这就是光再生脉冲放大器，再生脉冲放大器的主要优点就是结构简单，不用多级放大系统，就可得到足够放大。结果装置尺寸小、造价低、光电转换效率高。

再生脉冲放大器有两种结构，驻波腔放大器和环形腔放大器。它主要用于小信号放大，在高功率激光系统中，再生脉冲放大器的增益介质有对 $1.06 \mu m$ 波长放大器的Nd:YAG，Nd:磷酸盐玻璃；对 $1.054 \mu m$ 放大器的Nd:YLF，Nd:磷酸盐玻璃；Nd:磷酸盐-磷酸盐，钕宝石。再生放大器是一种有腔的多程放大发散系统，其放大过程的理论计算可参阅文献[7]。钕宝石上能级寿命很短，为微秒级。因此，其泵浦光通常采用调Q Nd:YAG 输出的532 nm 倍频光，其他则主要采用脉冲氙灯泵浦，最近开始采用激光半导体二极管作为泵浦源。钕宝石有非常宽的荧光线宽，特别适合于超短光脉冲的放大。

下面以 Nd:YLF 驻波再生脉冲放大器为例，来讨论再生脉冲放大的基本原理。Nd::YLF 再生脉冲放大器的方案和同步序列，如图4。

在这个装置中，一个激光脉冲通过一个楔形玻璃板(GW) 注入到激光腔中，腔倒空前，能量得到放大。

![图4 光再生放大器原理图](image)

![图5 钕宝石驻波腔再生放大器(图中TFP 为薄膜偏振器)](image)

这个共振腔包括普克尔斯盒(PC)，偏振器(P)， $\lambda/4$ 波片，增益介质和腔镜。它的原理如下：(a) 当普克尔斯盒关闭时，旋转 $\lambda/4$ 波片以防止腔内激射; (b) 在普克尔斯盒不加电压时，一个种子脉冲在离开腔之前 2 次通
过增益介质，结果没有显著的放大；(c) 当一个种子脉冲一次通过增益介质时，普克尔斯盒加上 λ/4 波电压，结果脉冲在腔中被放大；(d) 在达到最大增益时，普克尔斯盒加上 λ/4 波电压，放大脉冲偏振面旋转，由腔中倒空出来。

有时为了防止腔内能量达到破坏水平，再生脉冲放大器的一个端镜采用反射率为 50% 的部分光束输出。

对于飞秒光脉冲的再生放大，首先应将超短光脉冲经过具有正啁啾的光学系统进一步加宽，然后再注入再生脉冲放大器。[9]

在驻波再生放大器 TEM_00 模的腔模中（如图5），再生放大倍数可达 10^6 倍，输出能量可达 9 mJ。钛宝石在 1.053 μm 时，增益很低（≈12/次），为了产生设计希望的增益，光脉冲在腔内往返必须超过 120 次。这要求一个很短的光腔 (1.2 m) 以减少由于在近 800 nm 的自发辐射和放大自发辐射及热效应引起的上能态粒子数衰变，这个综合考虑给出有效寿命 2 μs。短的驻波腔和相应小的模式尺寸 (1.4 mm 直径)，加宽的啁啾脉冲的 B 积分和自位相调制限制了再生放大器可能提取的能量。进一步放大可用钛宝石环形再生放大器 (如图6)，它的腔长可达 3 m，从而可维持一个较大的 TEM_00 模 (2.3 mm 直径)，并相应降低了非线性效应，它放大的最大能量可达 60 mJ。

图6 钛宝石环形腔再生放大器

这两种再生放大器由于采用重复率 10 Hz, Q 关开关 Nd·YAG 水的二次谐波脉冲，因此它们可以 10 Hz 的重复率运转。

再生放大器由于光脉冲多次放大，其线性位相差和非线性位相差都会累积，结果造成光学输出质量下降。为了减少线性位相差，再生放大器所有元件加工都要保证有好的光学质量。而非线性位相差由于是小信号、低强度放大，影响并不十分严重。然而在高功率大能量放大中，必须考虑非线性位相差的影响，我们将在下节讨论。

5 大型多程放大器

再生放大器简化激光系统的结构，提高了转换效率，但将它用在大型装置时，应该解决种子脉冲如何输入和放大脉冲输出问题，另一个就是解决非线性位相差累积问题。前者需要采用大型普克尔斯盒开关，后者则需要将空间滤波器技术引入腔中。

Nova 以前的所有激光系统，均采用放大器尺寸逐级扩大方法，结果装置结构十分复杂。国家“点火装置”如再采用已有办法，那么整个装置将会十分庞大，效率十分低，造价十分高，且调整维护也十分复杂。为此将再生放大器的思想引入到“国家点火装置”的主放大器中，并采用组件形式，从而提高了效率，降低了造价。事情很明显，放大器的工作物质Nd·玻璃萤光寿命约 300~400 μs，泵浦光灯放电时间也在这个量级。而激光输出时间为 1~10 ns 左右，显然，大部分泵浦能和工作物
质储存在没有有效的转换成激光能，采用多级放大，可以有效的提取能量。

“国家点火装置”束带原形的主放大器结构及其偏振状态如图7。

图7 子束原形的主放大器结构和偏振状态

在两个全反射镜组成的激光腔之间放置激光工作物质、空间滤波器、普克尔斯电光开关和偏振器。腔空间滤波器透镜的焦距为9 m，M1和M2 全反射镜之间距离是36 m，这两个镜正好位于系统的传递成像平面处，以尽量避免全反射镜的破坏。

它的工作原理如下：在全反射激光系统发射期间，腔放大器被激发。加在开关上的电压脉冲的启动几乎与光脉冲到达注入反射镜同步。当晶体上的电压趋向平衡时，光脉冲向反射镜M1传播，并完成头两次放大。当光脉冲经过等离子体电极普克尔斯盒时，其偏振方向被旋转90°，从而可以通过起偏器。在光脉冲再向放大器完成其余次放大之前，它由反射镜M2反射，并经过起偏器和等离子体电极普克尔斯盒（再旋转90°）。在腔中往返240 ns 时间间隔内，等离子体电极普克尔斯盒上的电压降为零。当脉冲重新返回时，等离子体电极普克尔斯盒不再对其偏振方向旋转，因此光脉冲被起偏器反射而输出腔外。主放大器工作物质由厚4 cm 的11片构成，工作物质增益系数 $\beta = 0.06 \, \text{cm}^{-1}$，单通小信号增益为14.5。为了减小放大过程的 B 积分，11片也可分放在空间滤波器的两边，这样四

个腔式主放大器可作成一个组件。

图8 “国家点火装置”主放大器结构和偏振状态

而“国家点火装置”主放大器相对于子束原形稍有修改，它是通过偏振镜、引入和引出光束，其结构和偏振状态如图8。且其中一个反射镜采用变形镜，以便补偿片状放大器产生的累积线性位相差。

参考文献

9. B. C. Stuart, S. Herman, M. D. Perry, Chirped. Pulse
Advancement of regenerative pulse amplifier
and high power laser facilities

Meng Shaoxian
(Shanghai Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences, Shanghai 201800)

Abstract Basic principles of regenerative pulse amplifiers are discussed, development process from regenerative generators to regenerative amplifiers is described and the important role of regenerative amplifiers in high power laser facility is shown.

Key words regenerative pulse generator, chirped pulse, regenerative pulse amplifier

大孔径重复率脉冲 CO₂激光器
窗口材料的光学损伤强度

二氧化碳激光透射光学元件材料的选择要考虑它们的基本光学物理性质和具体激光装置的使用条件。对于大功率连续激光器，重要的参数是工作波长上的激光吸收，因为甚至较弱的吸收也不仅导致热聚焦的出现，使激光束恶化，而且还导致热机械应力的产生和积累，使光学元件损坏。

脉冲激光辐射的特征是瞬时功率高，这里红外光学元件材料的损坏机理与连续激光作用时不同——光学元件的损坏是由微观不均质点击穿引起的，所以这种情况下的光学强度与热斑能量密度在光强存在，性态和分布有关[14]。红外强光光学材料不同的损坏机制决定了解提高它光学强度问题的不同方法[15-6]。因此，研究红外光学材料重复率脉冲辐射(它兼有脉冲激光辐射和连续激光辐射为特征的作用因素)损坏的特点有一定意义。

本文实验研究了 KCl 和 BaF₂ 单晶在高功率大孔径重复率脉冲辐射的不同持续照射时间下的光学强度。使用脉冲宽度～40 μs、重复率100 Hz 的大孔径 TEA CO₂激光器作为辐射源(图1)。在试验样品平面上激光光斑面积为～100~ 200 cm²，平均功率为5~ 200 kW。样品被持续时间 t₀ = 0.5~ 15 s 的脉冲序列照射，能量密度 W 按整个脉冲序列平均，并在0.5~ 20 J/cm²范围内变化。

尺寸为175 mm×175 mm×27 mm 的光学元件由 KCl 单晶制备，它在10.6 μm 波长上的吸收为 β ~ (1.5~ 1.7)×10⁻⁵ cm⁻¹。由 β ~ 0.15~ 0.17 cm⁻¹ 的 BaF₂ 单晶制成分寸为 Φ150×21 mm 的光学元件。BaF₂ 单晶用深研磨-抛光法加工，逐步减小7% H₂SO₄溶液中磨料 M₂₈、M₁₄、M₅的粒度。最后用微细粉