锗酸盐玻璃中 $\text{Yb}^{3+}/\text{Tm}^{3+}/\text{Ho}^{3+}$ 掺杂浓度对 2 μm 发光的影响

千春雷 何冬兵 王国华 胡丽丽 张军杰

（中国科学院上海光学精密机械研究所，中国科学院激光重点实验室，上海 201800）

摘要 为了研究锗酸盐玻璃中采用 $\text{Yb}^{3+}/\text{Tm}^{3+}/\text{Ho}^{3+}$ 的掺杂方式实现 2 μm 发光的可行性，研究了 3 种离子的掺杂浓度对近 2 μm 发光的影响。通过计算掺杂浓度与 2 μm 发光的关系，得出在 TmF3 激发下，使得 Yb^{3+} 浓度的提高对 Ho^{3+} 的 2 μm 发光强度增强，而 Tm^{3+} 激发摩尔分数为 3% 时，随着 Yb^{3+} 浓度的提高 Ho^{3+} 的 2 μm 发光强度降低。当 Tm^{3+} 激发摩尔分数为 3% 时，随着 Yb^{3+} 浓度的提高 Ho^{3+} 的 2 μm 发光强度降低，当 Tm^{3+} 的近 2 μm 发光发射会得到增强。

关键词 光学材料；锗酸盐玻璃；光学性质；2 μm 激光；掺杂

中国分类号 TQ 717.75 文献标识码 A doi: 10.3768/AOS20092911.3448

The Effects of $\text{Yb}^{3+}/\text{Tm}^{3+}/\text{Ho}^{3+}$ Doping Concentration on 2 μm Wavelength Luminescence in Germanium Glasses

Yu Chunlei 何冬兵 王国华 胡丽丽 张军杰

（Key Laboratory of Materials for High Power Laser，Shanghai Institute of Optics and Fine Mechanics，Chinese Academy of Sciences，Shanghai 201800，China）

Abstract In order to study the feasibility of achieving 2 μm laser by using $\text{Yb}^{3+}/\text{Tm}^{3+}/\text{Ho}^{3+}$ codoping in germanium glass, the effects of doping concentration of three rare earth ions on the near 2 μm luminescence were researched, so optimized doping concentration can be acquired. The results show that when the doping mole fraction of TmF3 is 1%, the 2 μm luminescence intensity of Ho^{3+} increases with doping concentration of Yb^{3+} ions. However, the doping mole fraction of TmF3 is increased to 3%, the 2 μm luminescence intensity of Ho^{3+} is reduced with increasing doping concentration of Yb^{3+} ions. The near 2 μm luminescence of TmF3 can be raised by increasing doping concentration of Ho^{3+} ions and it is more apparent at high doping concentration of TmF3 ions, which could weaken the luminescence of Ho^{3+} relatively. On the whole, the 2 μm luminescence of Ho^{3+} is significantly affected by the doping concentration ratio of TmF3/Ho^{3+}. When the three doped samples were pumped by 880 nm LD, both the high doping concentration of TmF3 ions and low doping concentration of Ho^{3+} ions can lead to the reduction of 2 μm luminescence intensity of Ho^{3+}.

Key words optical materials；germanium glass；spectroscopic properties；2 μm laser；rare earth doped

1 引言

近年来人们对于稀土掺杂光子晶体激光器的研究显示出浓厚的兴趣。在近红外波段已经取得很大研究进展并获得广泛应用。对于波长为 2 μm 的红外激光，在医疗外科手术、光通讯、气体监测、环境污染检测及人眼安全激光雷达等领域以及用于新型近红外波段激光晶体都具有十分重要的应用价值。2 μm 和 HoF3 已作为 2 μm 域各种不同基
质中激光的激活离子而得到了大量的研究[10-12]。掺杂Tm³⁺和Ho³⁺离子的光纤激光器是作为泵浦高效光纤激光器的强有力的候选者[10-12]。

随着大功率半导体激光器和包层抽运方式的采用，掺铒光纤激光器的性能也得到了很大的改进。德国HIPG公司采用光导纤锥面抽运技术和光纤镜膜振荡技术实现的掺铒双包层光纤激光器已达到150 W的连续波输出[13]。NP Photonics公司于2007年在掺铒掺钪钛酸盐玻璃双包层单模光纤中获得1.9 μm激光输出，采用采用800 nm LD一端抽运方法获得激光功率为64 W，斜率为68±5%[14]。

另外一种引人关注的掺杂离子是Ho³⁺，在医疗激光器和激光雷达领域有非常独特的优势[15,16]。对Ho³⁺而言由于亚稳态寿命很长，适于制作脉冲激光器。Ho³⁺掺铒光纤激光器存在的主要问题则是缺少有效的抽运源。为了更好的提高Ho³⁺-2 μm的激光性能，一般采用非掺杂化离子的方式提高其激光性能。最为常见的一种优化方式是通过Tm³⁺激光泵化的Ho³⁺实现的，即通过Tm³⁺-1.5 μm激光能量转移至Ho³⁺-2 μm激光，由于其1.5 μm激光吸，最终由1.5 μm激光驱动实现2 μm激光。为了进一步拓展利用商品化的激光抽运源，研究人员也尝试采用Yb³⁺/Tm³⁺/Ho³⁺三掺杂方式来实现2 μm激光，对几种离子之间的能量转移关系进行了相应的分析，并取得了许多有益的结果[17]。

在石英基质中Ho³⁺的无辐射跃迁会制约激光效率，因此研究具有低噪声能量的玻璃基质的激光材料具有重要意义。掺钕玻璃具有相对较低的声子能量，此类材料性能好，适于制备光纤放大器并控制激光。已有研究机构成功的制备出Tm³⁺掺钕玻璃光纤并获得近2 μm激光输出[18,19]，因此在掺钕玻璃光纤实现Ho³⁺的2 μm激光输出也具有很大的优势。

本研究主要研究掺钕玻璃中采用Yb³⁺/Tm³⁺/Ho³⁺三掺杂方式实现2 μm激光的可行性，研究二种离子的掺杂浓度对2 μm激光强度的影响，从而对浓度进行优化选择，为制备掺钕玻璃光纤提供一定的参考。

2 实验
2.1 晶体制备

实验采用的玻璃组分为表1所示，其中GeO₂，Ga₂O₃，La₂O₃，Yb₂O₃，BaF₂，TmF₃，HoF₃的摩尔分数为99.99％。按配方精确称取混合料约30 g，充分混合、搅拌均匀，放入台金坩埚中于1400 ℃左右的氧化铝坩埚中熔化60 min，浇注在钢模上，移入顶封到玻璃转变温度T_r左右的马弗炉中退火3 h，最后以5 ℃/h的降温速率降至室温。将玻璃加工成尺寸为10 mm × 10 mm × 1.5 mm的玻璃片，玻璃片两面抛光后供测试用。

<table>
<thead>
<tr>
<th>表1 玻璃编号及摩尔比组分</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass samples</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>G4</td>
</tr>
<tr>
<td>G5</td>
</tr>
</tbody>
</table>

2.2 光谱测试

本实验的样品测试用800 nm LD抽运，光功率为800 mW。测试时为了避免抽运光的倍频光干扰在采用滤波片。激发光和发射光衰减90°;激发光和样品平面成80°,以上所有测试均在室温下进行。

3 实验结果及讨论

采用Yb³⁺/Tm³⁺/Ho³⁺三掺杂样品时，由于激光倍频干扰峰及Tm³⁺的发射峰
和 Ho⁺⁺⁺的发光峰在一些波段出现重叠，这必然会引起峰位的偏移。图 1 中是对光谱图按照图 5 个峰进行高斯分峰处理后的结果，可以看出有 3 个主要的发光发射带，分别是 1790 nm 的 Tm⁺⁺⁺ 3F₄ → 3H₆ 跃迁，1950 nm 和 2044 nm 处则属于 Ho⁺⁺⁺ 3Iₓ → 3Iₙ 跃迁，两个峰值分别对应于不同 Stark 子能级的跃迁；这与文献报道的发光峰特征基本一致。

图 2 给出了掺酸盐玻璃中固定 Tm⁺⁺⁺ 和 Ho⁺⁺⁺ 浓度改变 Yb⁺⁺⁺浓度时的荧光光谱。从图 2(a) 中可以看出，固定 Tm⁺⁺⁺ 和 Ho⁺⁺⁺ 浓度比为 1:1 时，YbF₃ 含量逐渐降低时荧光强度也降低，且摩尔分数 4% 的 YbF₃ 和 2% 的 YbF₃ 样品荧光强度相差不大。然而从图 2(b) 中可以看出，当固定 Tm⁺⁺⁺ 和 Ho⁺⁺⁺ 浓度比为 3:1 时，YbF₃ 摩尔分数从 4% 变为 6% 时，荧光强度反而出现降低。这是 3 种离子的变化规律，为了更好的解释这一现象，图 2 中三者归一化处理结果如图 3 所示。

图 1 2 μm 荧光光谱的高斯分峰拟合
Fig. 1 Gaussian peaks simulation of the 2 μm fluorescence spectra

图 2 Yb⁺⁺⁺浓度对发光的影响：(a) 固定 Tm⁺⁺⁺和 Ho⁺⁺⁺浓度比为 1:1，(b) 固定 Tm⁺⁺⁺和 Ho⁺⁺⁺浓度比为 3:1
Fig. 2 Effect of Yb⁺⁺⁺ concentration on the luminescence: (a) with Tm⁺⁺⁺ and Ho⁺⁺⁺ concentration rate of 1:1; (b) with Tm⁺⁺⁺ and Ho⁺⁺⁺ concentration rate of 3:1

图 3 对图 2 的归一化处理，(a) 图 2(a) 的归一化结果，(b) 图 2(b) 的归一化结果
Fig. 3 Normalised spectra in accordance with Fig. 2. (a) normalised spectra of Fig. 2(a); (b) normalised spectra of Fig. 2(b)

根据图 3(a) 和 (b)，Yb⁺⁺⁺浓度高的样品对应 Tm⁺⁺⁺在 1800 nm 处的发光较强，尤其 G6 样品 TmF₃ 摩尔分数为 3% 时，Tm⁺⁺⁺ 3F₄ → 3H₆ 跃迁发光更为明显。由此可以得出以下结论：(1) 在 Tm⁺⁺⁺浓度较低时 (TmF₃ 摩尔分数为 1%)，随着 Yb⁺⁺⁺浓度的提高 Ho⁺⁺⁺的 2 μm 荧光强度增强；(2) 当 Tm⁺⁺⁺浓度较高时 (TmF₃ 摩尔分数为 3%)，随着 Yb⁺⁺⁺浓度的提高 Ho⁺⁺⁺的 2 μm 荧光强度出现降低；(3) 随着 Yb⁺⁺⁺浓度的提高，Tm⁺⁺⁺的发光都会得到增强，且当 Tm⁺⁺⁺浓度较高时其发光更为明显，相对削弱了 Ho⁺⁺⁺的 2 μm 荧光。

对于上述现象可以认为是由于 3 种离子之间的
能量转移过程在 Tm⁺⁺浓度提高后产生了变化引起
的。如图 4 所示，根据 Yb⁺⁺/Tm⁺⁺双敏化时的能量
转移过程，当 Tm⁺⁺浓度提高，作为能量传递中间
过程的 Tm⁺⁺：F⁻→Ho⁺⁺：F⁻（路径 3）将会因为
Ho⁺⁺浓度相对 Tm⁺⁺离子浓度降低而减弱，也就是
对 Tm⁺⁺→F⁻能量级来说，相对缺少受体离子而无法
更有效的转移能量，反而促进 Tm⁺⁺：F⁻→H⁺⁺激
迁发射。

图 4 Yb⁺⁺/Tm⁺⁺/Ho⁺⁺能量转移过程
Fig. 4 Energy transfer process of Yb⁺⁺/Tm⁺⁺/Ho⁺⁺

对于 Tm⁺⁺浓度提高引起能量转移过程的影响，可以进一
步从图 5 中看出。当固定 Yb⁺⁺和 Ho⁺⁺浓度
为 4:1，Tm⁺⁺摩尔分数由 1% 提高到 2%，
3%时，对应 Ho⁺⁺的 2 μm 荧光强度明显减弱。对
比其同一化荧光谱也可以看出，随着 Tm⁺⁺浓度的
提高 Tm⁺⁺：F⁻→H⁺⁺跃迁发射明显增强。可见
Tm⁺⁺的近 2 μm 荧光发射与 Ho⁺⁺的荧光发射存在
很强的竞争，进一步验证了上面的结论。

从图 6 中看出，当固定 Yb⁺⁺和 Tm⁺⁺浓度比
为 6:3，改变 Ho⁺⁺的掺杂浓度时，对应 Ho⁺⁺的 2 μm 荧光
强度几乎没有变化。进一步从其同一化后结果图 6(b)
来看，Ho⁺⁺的掺杂浓度越低则 Tm⁺⁺：F⁻→H⁺⁺跃迁
荧光越强，这也是由于 Ho⁺⁺浓度相对 Tm⁺⁺浓度低，引
起能量传递过程 Tm⁺⁺：F⁻→Ho⁺⁺：F⁻互相减弱；而相
对促进了 Tm⁺⁺：F⁻→H⁺⁺跃迁发射。由此结合
Tm⁺⁺浓度对 2 μm 荧光发射的影响，可以得出如下结
论：1）Ho⁺⁺的浓度变化对 2 μm 荧光强度的影响要小
于 Tm⁺⁺的作用；2）2 μm 发光受 Tm⁺⁺/Ho⁺⁺的浓度比
影响很大，即可掺杂玻璃在 980 nm LD 激发下，无论
Tm⁺⁺浓度变化还是 Ho⁺⁺浓度降低，对于
2 μm 荧光都是不利的；3）在保证 Tm⁺⁺和 Ho⁺⁺的浓度
相差不多的情况下，提高 Yb⁺⁺的浓度将会提高近 2 μm
发射强度。

图 5 Tm⁺⁺浓度对发光的影响：(a) 发光谱图；(b) 同一化发光谱
Fig. 5 Effect of Tm⁺⁺ concentration on the luminescence: (a) the fluorescence spectra; (b) normalized fluorescence spectra

图 6 Ho⁺⁺浓度对发光的影响：(a) 发光谱图；(b) 同一化发光谱
Fig. 6 Effect of Ho⁺⁺ concentration on the luminescence: (a) the fluorescence spectra; (b) normalized fluorescence spectra
4 结 论

通过改变锗氧镜玻璃中 $\text{Yb}^{3+} / \text{Tm}^{3+} / \text{Ho}^{3+}$ 三种稀土离子的掺杂浓度，分别研究了三种稀土离子的浓度变化对近 2 μm 发光的影响。结果表明在锗氧镜玻璃中掺入 $\text{Yb}^{3+} / \text{Tm}^{3+} / \text{Ho}^{3+}$ 时近 2 μm 发光有如下特点：在 Tm^{3+} 浓度较低时（Tm^{3+}：摩尔分数为 1%），随着 Yb^{3+} 浓度的提高，Ho^{3+} 的 2 μm 发光强度增强；当 Tm^{3+} 浓度较高时（Tm^{3+}：摩尔分数为 3%），随着 Yb^{3+} 浓度的提高，Ho^{3+} 的 2 μm 发光强度降低；随着 Yb^{3+} 浓度的提高，Tm^{3+} 的近 2 μm 发光发射将得到增强，且当 Tm^{3+} 浓度较高时其发光更为明显。这表明了 Ho^{3+} 的 2 μm 发光受 Yb^{3+} 2 μm 发光和 $\text{Tm}^{3+} / \text{Ho}^{3+}$ 的浓度比影响很大，即可用 980 nm 光纤远距离掺杂效率，无论 Tm^{3+} 浓度的提高还是 Ho^{3+} 浓度的降低，对于 2 μm 发光都是不利的。

参考文献
1. Yang Kun, Ren Qunshi, Wei Shuyang et al., Application of 2 μm Tm^{3+} laser on biomedicine [J]. Laser & Optoelectronics Progress, 2004, 42(2): 82−88
2. 岳 欣, 王 钊, 郭 琳 等, 2 μm Tm^{3+} 激光器在生物医学中的应用[J]. 激光与光电子学进展, 2004, 42(2): 82−88
5. Zhang Shunlin, Chen Guofu, Wang Xianghua et al., Experimental research on Tm^{3+} Ho^{3+} co-doped silica fiber lasers[J]. Acta Photonica Sinica, 2004, 33(2): 139−142
8. 赵国荣, 刘文, 李学华 等, 2 μm 体激光器的材料研究[J]. 光学光子学报, 2008, 35(12): 17−20
9. Zhu Yachen, Lan Ge, Li Tong et al., 2 μm KTIOAsO$_3$ optical parametric oscillator [J]. Acta Optica Sinica, 2007, 27(11): 2059−2063
10. 朱国华, 唐龙, 李学华 等, 2 μm KTIOAsO$_3$ 赤色光学锁模激光器[J]. 光学学报, 2007, 27(11): 2059−2063
11. Tao Baoqun, He Wanjun, Li Yufeng et al., Technical study of Er^{3+} Yb^{3+} optical parametric oscillator pumped by a 2 μm Tm^{3+} YLF laser [J]. Chinese J. Lasers, 2005, 32(1): 33−42
12. 王国富, 刘文, 李学华 等, 2 μm Tm^{3+} Ho^{3+} YLF 赤色锁模 KTIOAsO$_3$ 光参量振荡器技术研究[J]. 光学学报, 2005, 32(1): 33−42
13. L. d. Vila, L. Gomez, V. G. Yaroslav et al., Dynamics of Er^{3+} Ho^{3+} energy transfer and deactivation of the Er^{3+} low level of thulium in fluorophosphate glasses[J]. J. Appl. Phys., 2004, 95(10): 6101−6103
14. X. Zou, H. Tocci. Spectroscopic properties and energy transfers in Tm^{3+} singly and $\text{Tm}^{3+} / \text{Ho}^{3+}$ doubly doped glasses [J]. J. Non-Cryst. Solids, 1999, 168(1): 113−124
17. Y. H. T. Huang, D. J. Coleman, T. A. King, High power 2 μm Tm^{3+} silica fibre laser pumped at 1.09 μm by a Yb^{3+} silica fibre laser [J]. J. Opt. Commun., 2001, 21(1): 597−598
21. 张云军, 王月竹, 刘同华. 稀土 Tm^{3+} 光纤激光器的发展[J]. 激光与光电子学进展, 2005, 42(6): 34−43
24. B. Feng, Tetsuro Shimizu. Optical properties, fluorescence mechanism and energy transfer in Tm^{3+}, Ho^{3+} and Tm^{3+}, Ho^{3+} doped near-infrared laser glasses, sensitized by Yb^{3+} [J]. Opt. Lett., 1995, 20(4): 797−801