Passively Q-switched Tm-doped fiber lasers with carbon nanotubes

Wei Zhou (周伟)$^{1, 2}$, Yonggang Wang (王勇刚)3, Xiaohui Li (李晓辉)$^{1, 2}$, Jingyu Long (龙井宇)1, Deyuan Shen (沈德元)1,* and Yishan Wang (王屹山)1

1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2Department of Physics, Xi’an Jiaotong University, Xi’an 710049, China
3Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China

*Corresponding author: shendy@opt.ac.cn

Received April 5, 2012; accepted July 7, 2012; posted online November 23, 2012

We demonstrate a passively Q-switched Tm-doped fiber laser with carbon nanotubes (CNTs), yielding a maximum output average power of around 82 mW and the corresponding pulse energy of 1.2 μJ. The laser operates at \sim 1.985 μm with repetition rates ranging from 26 to 69 kHz and pulse-duration from 1.5 to 2.6 μs. Our proposed laser shows that the CNTs are promising for the potential Q-switched Tm-doped fiber laser with high energy and tunable wavelength operation. To the best of our knowledge, this is the first report of a Q-switched Tm-doped fiber laser with CNTs as saturable absorber.

OCIS codes: 140.3510, 140.3540, 060.2320, 060.2390.
inner-cladding of TDF. A 2-m-long nominal Tm-fiber-matched passive fiber pigtail (10/125 µm, 0.15/0.46) of combiner was fusion spliced to the active fiber and all fiber ends were angle cleaved to eliminate back reflection. A PBS combined with half and quarter wave plates were employed to control the output ratio of laser power. Two lens with identical focal length (f = 40 mm) were used to collimate the beam in the cavity. The beam incident on the CNTs-SA was focused by a third lens with the focal length of 30 mm.

When the pump voltage was increased to 1.78 V the instable Q-switching operation occurred. Stable Q-switched pulses were obtained by tuning the wave plates, yielding the output average power of 14 mW, the repetition rate of 26 kHz, and pulse width of 2.6 µs. Figure 3 presents a typical stable Q-switched pulse trace and the corresponding spectrum at 38 kHz is shown in Fig. 2 (blue line). The spectrum was analyzed using a 0.55-m monochromator containing a 300-lines/mm grating blazed at 1800 nm and a TE-cooled InGaAs detector (0.8–2.2 µm), and the resolution of the monochromator was estimated to be ~0.9 nm at 2 µm. As can be seen, our Q-switched laser operated at the centre wavelength of 1985 nm with the full-width at half-maximum (FWHM) of 2 nm.

As shown in Fig. 4, the output average power and repetition rate monotonically increase with the further increase of pump voltage. At the pump voltage of 2.32 V, the maximum output average power of 82 mW was obtained, corresponding to the maximum repetition rate of 69 kHz. Figure 5 shows the pulse energy and duration as a function of the pump voltage. With the increase of the pump voltage, the pulse energy almost linearly grows and the pulse width decreases, which is different from the theoretical predictions (pulse energy and width are constant and independent of pump power)\(^9\). We attribute the discrepancy to the larger energy storage and greater energy extraction efficiency by the long fiber length and relatively weak pump intensity\(^13\). The maximum pulse energy was calculated to be 1.2 µJ at the average output power of 82 mW.

Pulse duration was measured by high-speed oscilloscope (300-MHz bandwidth, 35-ps detector) and it decreased with the increasing pump voltage. Figure 6 shows the pulse duration with the output average power of 82 mW. The pulse duration (FWHM) was measured to be ~1.5 µs and the pulse shared a symmetric Gaussian-shape rather than the predicted sech\(^2\)-shape\(^9\). In fact, similar pulse-shape had also been reported by Herda et al.\(^11\). We expect the pulse duration can be shortened down to ns-levels by using a shorter-length fiber combined with core pump scheme or increasing available pump intensity according to the theoretical predications\(^9\).

The high average output power and large pulse energy we obtained were scaled a lot than previous results\(^14,15\). We attributed this to the improvement of thermal durability of CNTs. Due to the broad absorption bandwidth of CNTs in the wavelength range of 2 µm, our proposed laser is promising in constructing a tunable Q-switched laser by employing a diffraction grating or changing fiber length in a linear-cavity.

In conclusion, we report a Q-switched TDF laser with the maximum average output power of 82 mW and the corresponding pulse energy of 1.2 µJ by employing CNTs-SA. The laser operates at around 1.985 µm,
Fig. 6. Measured pulse width with output average power of 82 mW.

with pulse-repetition-rate ranging from 26 to 69 kHz and pulse-duration from 1.5 to 2.6 µs. Our proposed laser shows that the CNTs are promising for the Q-switched TDF laser with extremely high energy and tunable wavelength operation due to the improved thermal durability and large bandwidth of CNTs. To the best of our knowledge, this is the first demonstration of a Q-switched TDF laser with CNTs, which is of great importance for LIDARs.

This work was supported by the Hundreds of Talents Programs of the Chinese Academy of Sciences.

References