Detection of automatic abnormity in the winding and splicing of fiber-optic coil

Haoting Liu (刘皓挺)*, Wei Wang (王巍), Xinfeng Li (李新峰), and Feng Gao (高峰)
Beijing Aerospace Times Optical-electronic Technology Co. Ltd., Chinese Academy of Aerospace Electronics Technology, Beijing 100094, China
*Corresponding author: inkyran@hotmail.com
Received May 13, 2013; accepted August 2, 2013; posted online September 29, 2013

A high-precision automatic state monitoring and abnormity alarm technique is proposed to solve the process improvement issues of fiber-optic coil winding and splicing. Industrial cameras are used to capture optical and hot images during the assembly of optical components of a fiber-optic gyroscope. A line and contour analysis technique is used to detect abnormal winding. By analyzing the intensity distribution of transmitted light, the graph cut model and multivariate Gaussian mixture model are used to detect and segment the splicing defects. The practical applications indicate the correctness and accuracy of our vision-based technique.

OCIS codes: 150.0150, 100.0100, 060.0060.
doi: 10.3788/COL201311.101501.

The fiber-optic coil is one of the most important components of fiber-optic gyroscopes[1]. Fiber-optic gyroscopes use polarization lights to detect changes in angular rate according to the Sagnac effect. Thus, the fiber-optic coil functions in multiple light transmission[2]. Many studies[3–5] have proven that the winding process of a fiber-optic coil has distinct influences on the output precision of a gyroscope. For example, in Ref. [4], the authors have built the finite element model of a typical coil winding mode to study the effects of structural parameters, thermal parameters, and temperature disturbed parameters on the Shupe error of fiber-optic gyroscope. Thus, the assemblage technique of this coil is an extremely important operation process in gyroscope manufacture.

Currently, at least two kinds of pivotal operation are correlated with this issue, namely, winding and splicing operations. Figure 1 shows the typical optical component diagram of a kind of fiber-optic gyroscope. When assembling the optical module, the fiber-optic coil is firstly wound in a quadrupole symmetrical pattern[3]. The ends of the fiber-optic coil are then spliced with the ends of a Y-junction optical waveguide with a polarization maintaining (PM) fiber splicer. Finally, all other ends such as light source, coupler, and detector are spliced by other single-mode or multi-mode fiber splicer. Traditionally, the winding and splicing operations are all manually completed. The burdensome labor of engineers inevitably brings errors. To address these problems, we use the machine vision technique together with pattern recognition theory to replace people with intelligent machines and improve their working reliability.

Figure 2 shows the winding process diagram of a fiber-optic coil. The winding process involves rolling and wrapping fibers on the surface of a skeleton based on a quadrupole symmetrical pattern. This winding pattern demands fibers to be tidily arrayed with one another without any interspace or interleaving between neighboring wires. Given that the high-output precision of a fiber-optic gyroscope requires a long light transmission distance of a fiber-optic coil (i.e., the length requirement may be more than hundreds of meters), the winding and surveillance processes inevitably consume several hours or days. As a result, abnormal winding occasionally occurs. Figure 2(b) shows the normal winding mode, whereas Fig. 2(c) depicts the result of the abnormal winding mode.

To solve the abnormal detection problem, two kinds of image analysis methods are utilized. Figure 2 (a) shows the section plane image of the winding process. Firstly, we use the parallel detection technique to guarantee accurate orderliness of wound fibers. The image contents within the red rectangle in dashed line show the array of paratactic fibers. Once the parallel mode is broken, an abnormal alert should be reported. The line detection method of Hough transformation[6] can be used to judge the juggling line phenomenon. Secondly, a contour anal-
ysis method[7] is used to identify the abnormality edge of the fiber-optic coil image. The image included within the green rectangle in dashed line displays the winding edge of fibers. The similar arc and pixel number of each line end can be observed in turns except for abnormal modes.

Figure 3 shows the line and edge contour detection results. Given that the abnormality detection of the winding process has a real-time request, complex processing methods cannot be used. We set the underside region of the winding machine as the region of interest (ROI) to implement the feature analysis task. Figure 3(a) shows that after setting the ROI, the Hough line detection method can be used to identify abnormality: if the slope of line detection result markedly differs from the history value, we conclude the occurrence of abnormality. Figure 3(b) shows the edge contour detection result.

Firstly, the morphological method of the following formula

\[
I_{\text{edge}}=\frac{1}{N}\sum_{i=1}^{N}\{[(I_{\text{ROI}} \oplus B_i)-(I_{\text{ROI}} \Theta B_i)] \Theta B_{i-1}\}
\]

(1)
is used to extract contour, where \(I_{\text{edge}}\) and \(R_{\text{abnormity}}\) are the processing results of edge and abnormality detection, respectively. Symbols “\(\oplus\)” and “\(\Theta\)” denote dilation and erosion operations, respectively. \(B_i\) is a morphological rectangle operator with size 5 \(\times\) 5. All its elements equal “1.” Then, we compute the contour difference among selected images based on

\[
R_{\text{abnormity}} = \begin{cases}
1 & I(t = t_1) - I(t = t_0) > T_{\text{winding}}, \\
0 & \text{else}
\end{cases}
\]

(2)

where \(T_{\text{winding}}\) is a threshold, and \(t_0\) and \(t_1\) are the specific time points (\(t_1 > t_0\)).

The time-point selection rule of images \(I(t = t_1)\) and \(I(t = t_0)\) should be related to the working speed of the winding machine. This rule guarantees that the increment of edge contour is smaller than a threshold in the time axis. For example, if the fiber-optic coil number appearing in the former image \((t = t_0)\) is \(n\), a proper capture time \(t_1\) can be selected only when the coil number in the latter image \((t = n+1)\) is \(n+1\) or \(n+2\). Finally, once the pixel number of contour difference exceeds this threshold, an abnormality should also be reported.

In this letter, a defect segmentation method with illumination prior is proposed to monitor the process of fiber splicing. Figure 4 shows the splicing sketch map and their image samples, while splicing fibers[8], we initially peel off the jackets. Then, we place cladding and core into the fiber splicer after the surfaces are cleaned. Next, the splicing machine heats these two fibers by current until a proper polarization observation by lens-effect-tracing

Fig. 3. Abnormal line and contour detection results.
where \(I_i \) is the gray of pixel; \(x_i = 1 \) or 0 denotes the \(i \)th pixel belonging to the foreground or background; \(\mu \) denotes means; \(\sigma \) denotes variances; subscripts “F” and “B” are the foreground and background, respectively; \(\sigma_n \) is the image noise; and \(\text{dist}(p, q) \) is a distance metric.

Obviously, \(E_1 \) calculates edge weights between each pixel and terminal points, whereas \(E_2 \) estimates edge weights among neighboring pixels. Although these energy functions can solve the segmentation problem to some extent, more prior information should be considered to improve precision.

The design of \(E_3 \) considers the illumination prior of transmitted light\(^{10,11}\). Let us take the ellipse-type PM fiber as an example. Figure 4(a) shows that the transmission of light from one side to the other is complex, i.e., reflection, refraction, and intensity distribution of light are all relative to the wavelength, light incident angle, or refractive index and reflectivity of a material\(^{12}\). In Ref. \(^{13}\), the authors used an analytical method of simulating polarized light transportation in biological tissue samples. The Gaussian function is used to imitate the intensity distribution of MGMM can be expressed as

\[
F(X) = \sum_{i=1}^{K} w_i f(X|U_i, \Sigma_i),
\]

\[
f(X|U_i, \Sigma_i) = \frac{1}{2\pi|\Sigma_i|^{1/2}} \exp\left\{-\frac{1}{2} (X - U_i)^T \Sigma_i^{-1} (X - U_i)\right\},
\]

Thus, \(E_3 \) can be estimated by

\[
E_3 = \begin{cases} K & I_i - \hat{I}_i > T_0 \\ 0 & \text{else} \end{cases},
\]

where \(X \) is the image intensity, \(U_i \) and \(\Sigma_i \) are the mean and covariance vectors of the MGMM component, respectively; \(w_i \) denotes weights; \(\sum_i w_i = 1 \), \(w_i \geq 0; I_i \) and \(\hat{I}_i \) are the original and estimated image intensities, respectively; \(K \) is a constant; \(T_0 \) is a threshold.

Once the defective mode occurs, some bright light spots appear at the center of fiber joint. Thus, when calculating \(E_3 \), we select initial pixels at the outside regions of the spliced image, e.g., pixels within the yellow rectangle in Fig. 5(b), to estimate the MGMM parameters. The expectation-maximization algorithm\(^{18}\) is used to implement parameter estimation. After calculating the coefficients, we can use this model to compute the intensity distribution \(\hat{I}_i = F(X) \) at the center region of the image where the emergence probability of defects is always high. Finally, we can use the difference between

Table 1. Energy Function \(E_1 \) of GCM

<table>
<thead>
<tr>
<th>Edge Type</th>
<th>Weight</th>
<th>Vertex Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>({p, s})</td>
<td>(f^w_p)</td>
<td>(p \notin F \cup B)</td>
</tr>
<tr>
<td>({p, t})</td>
<td>(f^w_t)</td>
<td>(p \notin F \cup B)</td>
</tr>
<tr>
<td>({p, s})</td>
<td>(C)</td>
<td>(p \in F)</td>
</tr>
<tr>
<td>({p, t})</td>
<td>(C)</td>
<td>(p \in F)</td>
</tr>
<tr>
<td>({p, s})</td>
<td>(0)</td>
<td>(p \in B)</td>
</tr>
<tr>
<td>({p, t})</td>
<td>(0)</td>
<td>(p \in B)</td>
</tr>
</tbody>
</table>
the actual image intensity I_i and estimated \hat{I}_i to calculate E_3.

Figure 6 shows the defect segmentation results. Before we use GCM for elaborated computation, the flood fill
algorithm is used to identify initial segmentation. The control parameters of flood fill algorithm for guaranteeing
a smaller segmentation region than the actual defective region are very easy to set. Figure 6 shows that our proposed
method has a better segmentation effect than the traditional method. The highlighted region in the middle
axis is always troublesome when segmenting the defective region because they have similar gray values with
defective pixels. Thus, with the accessorial constraint of E_3, the pixels in the highlighted axis can be classified as
the background. Figures 6(e) and (f) also notice some small spots at the right-top and bottom sides. These
spots are always the tiny impurities attached onto the surface of fibers. Thus, we do not regard them as defects
because of their small sizes.

In conclusion, a high-precision automatic state monitoring and abnormality detection method for the winding
and splicing of fiber-optic coil is proposed. Hough line detection and morphology-based contour segmentation
techniques are used to monitor the juggling line issue of fiber-optic coil winding. A GCM with MGMM illumina-
tion priors is proposed to segment the defect of a spliced fiber. Many experimental results show the correctness
and validity of our techniques.

This work was supported by the National “973” Program of China under Grant Nos. 613186 and 2011CB711000.

References

1. W. Wang, Introduction of the Interferometric Fiber Optic Gyroscope Technology (China Aerospace Press, Beijing,
2010).
8. H. Liu, W. Wang, X. Li, and F. Li, in Proceedings of IEEE International Conference on Robotics and Biometrics
9. S. Vicente, V. Kolmogorov, and C. Rother, in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition 1 (2008).