Doping transition metal ions as a method for enhancement of ablation rate in femtosecond laser irradiation of silicate glass

Juqiang Fang (房巨强)1, Lan Jiang (姜澜)1, Qiang Cao (曹强)1*, Yanping Yuan (袁艳萍)2, Liangti Qu (曲良体)3, Ji’an Duan (段吉安)4, and Yongfeng Lu (陆永枫)5

1NanoManufacturing Fundamental Research Joint Laboratory of National Science Foundation of China, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
3Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
4State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
5Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA

*Corresponding author: Caoqiang@bit.edu.cn

Received July 23, 2014; accepted September 11, 2014; posted online November 17, 2014

We present a doping method to improve the femtosecond laser ablation rate and promote ablation selectivity. Doping transition metal ions, Co2+ or Cu2+, in silicate glass apparently change absorption spectroscopy and induce resonant absorption at wavelengths of 600 and 800 nm, respectively. Comparing with femtosecond laser processing of the same glass without doping, we find that the threshold fluence decreases and the ablation rate increases in resonant absorption in doped silicate glass. Resonant absorption effectively increases multiphoton ionization for seed-free electron generation, which in turn enhances avalanche ionization.

OCIS codes: 140.7090, 220.4610.
doi: 10.3788/COL201412.121402.

In micro/nanomachining, femtosecond lasers are very promising for the fabrication of transparent dielectrics for photonic and optoelectronic devices,[1–4] due to their high intensity and ultrashort pulse width. However, typical femtosecond laser ablation is low throughput with a high photon cost, which is not suitable for industrial applications.[5,6] One effective way to improve photon absorption efficiency is by resonant absorption where photon energy, hv (or multiphoton energy, Nhv), is equal to the difference between the energy levels involved in electronic transition. Resonant absorption has been widely applied in different research areas,[7–9] especially in ultrafast laser ablation. Liu et al. realized resonance-enhanced multiphoton ionization in photoelectron spectroscopy in which ammonia was first excited by resonant absorption of two 267 nm photons and then ionized by a 401 nm probe pulse.[10] Zhao et al. found that a resonant enhancement effect in nonlinear photon absorption happened during laser ablation of neodymium glass when the laser wavelength was 586 nm.[11]

However, in the aforementioned studies on laser resonant ablation, the band structures of the experimental materials were well defined and fixed. A common resonant absorption practice is to tune the laser wavelength to achieve a resonant transition by exciting an atom or molecule. But for transparent dielectric material, such as silicate glass, there is no controllable energy level in the forbidden band to realize the resonant absorption of a photon within the wavelength tuning range by a commercial tunable laser source. Doping proper elements in dielectric materials can adjust the material band structures and the corresponding optical properties.[12,13] Therefore, we considered the use of a doping method to achieve resonant absorption at specific photon energy and enhance the material removal rate of silicate glass.

In this work, the transition metal ions, Co2+ and Cu2+, are selected as dopants to mix into the silicate glass, which induce photon resonant absorption in the visible to near-infrared band. We find that doping can selectively improve the material removal rate in the enhanced absorption band, and the amount of improvement strongly depends on the doping concentration level and absorbed intensity.

The experimental setup was a commercial optical parametric amplifier (OPA, Light Conversion) coupled to an amplified Ti:sapphire laser system (Spectra-Physics) with a pulse width of 50 fs (full-width at half-maximum) and a repetition rate of 1 kHz. The OPA could tune laser wavelengths from 290 to 2600 nm. A combination of a half-wave plate and a polarizer
allowed the laser energy delivered onto the sample to be controlled. A mechanical shutter was applied to get the desired pulse numbers. The laser pulse was focused normally on the sample surface with a 20× numerical aperture = 0.45 microscope objective to a Gaussian spot radius \((1/e^2)\) of 2.9 \(\mu\)m. The Rayleigh length of the laser beam was calculated to be 6.4 \(\mu\)m. The sample was installed on an XYZ translation stage allowing the precise positioning of the sample between the irradiation points. A charge-coupled device (CCD) camera was used to visualize the surface of the sample and to position the sample surface at the beam focus.

The Co\(^{2+}\) or Cu\(^{2+}\) doped silicate glass samples were prepared by the normal melt-quenching technique. Reagent grade chemicals of \(\text{SiO}_2\), \(\text{Na}_2\text{O}\), \(\text{CaO}\), and \(\text{CoO}/\text{CuO}\) were used in this work as starting materials. They were carefully mixed in appropriate proportions and melted in an alumina crucible at 1500 °C by an electrical muffle furnace for 3 h. After complete melting, the melts were cast into a stainless steel mold before being annealed at 500 °C for 3 h to relieve any residual stress. Finally, the samples were cooled down to room temperature, cut, and fine polished to a dimension of 40×20×2 (mm). The chemical compositions of the glasses in mass percent with the name of the samples are summarized in Table 1. Absorption spectra of the glass samples were measured by a UV-VIS-NIR spectrophotometer (Varian) at room temperature.

The ions Co\(^{2+}\) and Cu\(^{2+}\), when introduced into glass, caused resonant absorption in their electron clouds under white-light irradiation. Usually, discrete amounts of energy were taken up in certain wavelength ranges so that the irradiated light lost large portions of wavelengths in the form of defined absorption bands\[^{[14]}\]. As shown in Fig. 1, compared with the undoped silicate glass, the glasses doped with transition metal ions exhibited strong absorption bands centered around 600 nm for Co\(^{2+}\) doped glass and 800 nm for Cu\(^{2+}\) doped glass\[^{[16]}\].

To determine the ablation rate enhancement in femtosecond laser processing of doped glass by resonant absorption, microholes were drilled at different wavelengths and energy fluences. In the experiment, the concentrations of CoO and CuO in the doped silicate glass were 3.0 and 2.0 mass\%, respectively. According to the optical absorption characteristics of the glass samples shown in Fig. 1, the laser wavelengths of 600 and 800 nm were selected for comparison. After processing, the depth was measured using a confocal microscope (Olympus) by adjusting the focus point on the edge and the bottom of the hole, respectively.

In Figs. 2(a) and (b), the maximum hole depth of the glass is plotted as a function of the applied laser fluence at wavelengths of 600 and 800 nm. The average

Table 1. Chemical Compositions of Glasses

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glass Composition (mass%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicate Glass</td>
<td>(70\text{SiO}_2–20\text{Na}_2\text{O}–10\text{CaO})</td>
</tr>
<tr>
<td>S70Co3.0</td>
<td>(70\text{SiO}_2–20\text{Na}_2\text{O}–10\text{CaO}–3.0\text{CoO})</td>
</tr>
<tr>
<td>S70CuX</td>
<td>(70\text{SiO}_2–20\text{Na}_2\text{O}–10\text{CaO}.X\text{CuO})</td>
</tr>
</tbody>
</table>

Note: \(X = 0.5–4.0\) (mass\%).
for each point was determined using three measured data with a standard deviation from 5% to 10%, which is depicted by error bars. The ablation depth appeared to follow a logarithmic dependence on the applied laser fluence; and at high fluences, the ablation depth tended to reach saturation and was in the range of less than 3.5 μm.

Compared with undoped silicate glass, the ablation depth was deeper for glasses doped with Co2+ or Cu2+; but this phenomenon only existed at the enhanced absorption band. At the non-resonant absorption wavelengths, the difference in ablation depth between doped and undoped glass almost disappeared. The ablation rate, average ablation depth per pulse, was obtained by dividing the hole depth by the pulse number and the hole depth was measured before reaching saturation at 50 pulses. At lower laser fluence, resonant absorption can enhance ablation rates by up to 81.5% for Co2+ doped glass, and 128.9% for Cu2+ doped glass.

In addition, the threshold fluences were measured to confirm the doping effects on the ablation enhancement. Threshold fluences were calculated based on the relationship between the maximum hole depth \(h \) and laser fluence \(\phi \). The solid lines shown in Fig. 2 fit the logarithmic expression

\[
h(\phi) = h_0 \ln \left(\frac{\phi}{\phi_{th}} \right),
\]

where \(\phi_{th} \) and \(h_0 \) are the fit parameters\(^{[9]}\). The fit parameter \(h_0 \) represents the hole depth at fluence \(e^{x}\phi_{th} \) (\(e = 2.718... \)) for a pulse number of 50, and the value of it was approximately 900 nm. The multipulse threshold fluence \(\phi_{th} \) for silicate glass at 800 nm was 2.98 J/cm\(^2\), which was in agreement with the value obtained in Ref. [20].

As shown in Table 2, sudden drop in the ablation threshold was observed at a wavelength of 600 nm in Co2+ doped glass and at 800 nm in Cu2+ doped glass. The threshold fluence also decreased slightly at the non-resonant absorption wavelengths, which was probably attributed to the decreasing band gap of the silicate glass after doping. In our experiment, the low doping concentration made the band gap decrease not so obvious. The percentage decrease in the ablation threshold for doped glass, compared with the undoped silicate glass, is listed in Table 2. At the resonant absorption wavelengths, the threshold fluence of Co2+ and Cu2+ doped glass decreased 36.8% and 28.4%, respectively, than that of undoped glass. The reduction in threshold fluence was supposed to be related to the intensity absorbed by the material, as a higher absorbance of the doped glass (Fig. 1) led to a relatively higher drop in threshold fluence.

In order to analyze the relationship among ablation rate, threshold fluence, and absorbed intensity, we prepared the following Cu2+ doped silicate glasses with doping concentrations ranging from 0.5 to 4.0 mass%.

\[
\alpha = \frac{1}{d} \ln \left(\frac{I_0}{I} \right),
\]

where \(d \) is the thickness of the sample, and \(I_0 \) and \(I \) are the intensities of incident and transmitted radiations, respectively. The values of the absorption coefficient, the percentage of ablation rate increase, and the percentage of threshold fluence decrease are listed in Table 3. At the absorption coefficient of 14.5 cm\(^{-1}\), the doped glass achieved a maximum threshold fluence decrease of 41.2% and ablation rate increase of 190.5%.

After irradiation by the femtosecond laser, the focused area in the Cu2+ doped glass was still blue as observed in an optical microscope. The absorption

Table 2. Comparison of Threshold Fluence Between Glasses at Wavelengths of 600 and 800 nm and the Percentage Decrease in Threshold Fluence for Doped Glass

<table>
<thead>
<tr>
<th>Glass Sample</th>
<th>(\lambda = 600 \text{ nm})</th>
<th>(\lambda = 800 \text{ nm})</th>
<th>Reduction (%)</th>
<th>Threshold Fluence</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold Fluence (J/cm(^2))</td>
<td>Reduction (%)</td>
<td>Threshold Fluence (J/cm(^2))</td>
<td>Reduction (%)</td>
<td></td>
</tr>
<tr>
<td>Silicate Glass</td>
<td>2.33</td>
<td>–</td>
<td>2.98</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>S70Co3.0</td>
<td>1.47</td>
<td>36.8</td>
<td>2.85</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>S70Cu2.0</td>
<td>2.24</td>
<td>3.5</td>
<td>2.13</td>
<td>28.4</td>
<td></td>
</tr>
</tbody>
</table>
the densities of free electrons contributed by photoionization were much higher due to the resonant absorption between the intermediate state and the ground state\[10,23\]. Subsequently, the impact ionization became dominant at relatively high free-electron densities, which led to more intense electron–electron collision and more free electrons generation. Ionization enhancement increased the ablation rate, and the degree of increase strongly depended on the absorbed intensity of the glass.

In conclusion, we demonstrate that the doping method can improve the ablation rate and possible selectivity in femtosecond laser micromachining of transparent dielectrics. We change the absorption of silicate glass by doping with transition metal ions, Co$^{2+}$ or Cu$^{2+}$, and observe the threshold fluence decrease and ablation rates increase in the enhanced absorption wavelengths located at 600 nm for Co$^{2+}$ doped glass and 800 nm for Cu$^{2+}$ doped glass. In addition, the ablation enhancement is closely related to the doping concentration and absorbed intensity that determine threshold fluence and ablation rate differences between doped glasses. The ablation enhancement is mainly due to the resonant absorption effect, which enhances the multiphoton ionization and generates more free electrons during a laser–glass interaction.

This work was supported by the National “973” Program of China (No. 2011CB013000) and the National Natural Science Foundation of China (Nos. 91323301 and 51375051).

<table>
<thead>
<tr>
<th>Glass Sample</th>
<th>S70Cu0.5</th>
<th>S70Cu1.0</th>
<th>S70Cu2.0</th>
<th>S70Cu3.0</th>
<th>S70Cu4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption Coefficient (cm$^{-1}$)</td>
<td>3.1</td>
<td>5.5</td>
<td>8.9</td>
<td>11.4</td>
<td>14.5</td>
</tr>
<tr>
<td>Ablation Rate Increase (%)</td>
<td>87.3</td>
<td>109</td>
<td>128.9</td>
<td>148.9</td>
<td>190.5</td>
</tr>
<tr>
<td>Threshold Reduction (%)</td>
<td>19.7</td>
<td>23.2</td>
<td>28.4</td>
<td>32.5</td>
<td>41.2</td>
</tr>
</tbody>
</table>
References