Wavelength- tunable barium gallate persistent luminescence phosphors with enhanced luminescence

Qianting Yang (杨倩婷), Renagul Abdurahman (热娜古丽•阿不都热合曼)*, Tongsheng Yang (杨通胜), and Xuefeng Sun (孙雪峰)

Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844007, China.

*Corresponding author: renagul111@aliyun.com

1.Experiments

1.1. Preparation of BGO:Cr

 $Ba_yGa_2O_4$: Cr_x (x=0- 0.10; y=0.08- 1) PersL phosphors were synthesized by a solid-state method. High purity $BaCO_3$ (99.00%), Ga_2O_3 (99.99%), and Cr_2O_3 (99.00%) were used as the precursors, which were sourced from Shanghai Aladdin Reagent Co., Ltd.,. The raw materials were mixed and ground in 1 mL of ethanol with an agate mortar thoroughly, in accordance with the stoichiometric ratio of $Ba_yGa_2O_4$: Cr_x (x=0- 0.10; y=0.08- 1). After grounding, the mixtures were transferred into a ceramiccrucible in a muffle furnace preheated at 100 °C for 1 h in an air atmosphere. Then, calcinations were performed at 1100 °C for 2 h, and cooled to room temperature and reground in order to obtain the wavelength- tunable barium gallate PersL phosphor samples.

1.2. Characterization

The phases were identified by X- ray diffraction (XRD) using a Bruker D8 X- ray diffractometer with Cu Ka radiation (λ = 0.15418 nm). The emission and excitation spectrum of the BGO: Cr PersL phosphors were measured using the LS- 55 fluorescence spectrophotometer (PerkinElmer, USA). Persistent luminescence was recorded with a high-resolution fluorescence spectrometer (Hitachi Instruments F- 7000) with the use of a 500 W xenon lamp as the excitation source. Persistent luminescence images were captured by an IVIS Lumina III imaging system (PerkinElmer, USA). The thermo-luminescence (TL) glow curves of the samples were obtained by an SL- 08 TL measuring instrument (China).

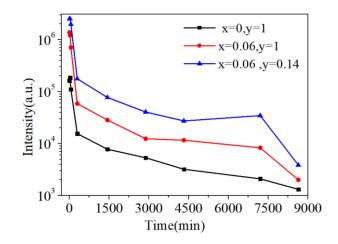
1.3. Information storage property

The information storage property was carried out in accordance with the methods mentioned elsewhere^[1]. The BGO: Cr PersL powders (100 mg) were suspended in 2 mL of ethylene glycol and ethylalcohol (1: 1) solution, and then, the suspensions were spread on a glass dish and gradually dried via heating. Ultimately, flat layers of BGO: Cr were acquired. The flat layers were covered with photo masks of the letter K and were exposed to a 254 nm UV light for 2 min to record the characteristic phosphorescence of the K-patterns on the flat layers. After removing the UV light and the photo- mask, the luminous patterns were read out by a CCD camera at room temperature.

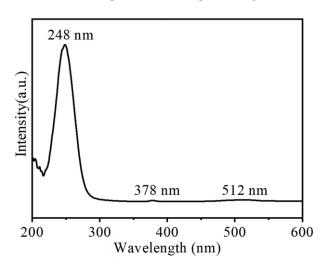
2. Supplementary Tables

Compound	Emission wavelength (nm) of peak	Emission intensity(a.u.) at peak	
$BaGa_2O_4$	450	60.4	
BaGa ₂ O ₄ : Cr _{0.006}	715	56.6	
BaGa ₂ O ₄ : Cr _{0.02}	715	57.4	
BaGa ₂ O ₄ : Cr _{0.04}	727	59.4	
BaGa ₂ O ₄ : Cr _{0.06}	731	65.0	
BaGa2O4: Cr0.08	726	60.4.	
BaGa ₂ O ₄ : Cr _{0.10}	731	62.1	

Table S1 Emission wavelength and intensity values of $BaGa_2O_4$: Cr_x (x=0, 0.006, 0.02, 0.04, 0.06, 0.08, 0.10)PersL phosphors.


Table S2 Emission wavelength and intensity values of BayGa2O4: Cr0.06 (y=0.08, 0.10, 0.12, 0.14, 0.16, 0.18) PersL

phosphors.						
Compound	Emission wavelength (nm) of peak	Emission intensity(a.u.) at peak				
BaGa ₂ O ₄ : Cr _{0.06}	731	65.0				
Ba _{0.08} Ga ₂ O ₄ : Cr _{0.06}	728	71.8				
Ba0.10Ga2O4: Cr0.06	737	73.7				
Ba0.12Ga2O4: Cr0.06	738	81.7				
Ba _{0.14} Ga ₂ O ₄ : Cr _{0.06}	739	81.9				
Ba0.16Ga2O4: Cr0.06	738	78.3				
Ba0.18Ga2O4: Cr0.06	739	77.4				


3.Supplementary Figures

UV 10 min	30 min	1 h	3 h	5 h j	High
BaGa ₂ O ₄	1 d	2 d	3 d	6 d	
UV 10 min	3 0 min) 1 h	3 h	5 h	
BaGa ₂ O ₄ :0.06Cr	1 d	2 d	0 3 d	6 d	
UV 10 min	3 0 min	1 h	3 h	5 h	Radiance
$Ba_{0.14}Ga_2O_4:0.06Cr$	1 d	2 d	0 3 d	6 d	nce
LED 60s	5 min) 10 min	2 5 min	2 h	
BaGa ₂ O ₄ BaGa ₂ O ₄ :0.06Cr					
$Ba_{0.14}Ga_{2}O_{4}:0.06Cr$	6		0	Ŏ	Low

Fig. S1. NIR afterglow images of BaGa₂O₄, BaGa₂O₄: Cr_{0.06}, and Ba_{0.14}Ga₂O₄: Cr_{0.06} PersL phosphors at different time.

 $\textbf{Fig. S2.} \ Persistent \ luminescence \ decays \ of \ BaGa_2O_4, \ BaGa_2O_4 \vdots \ Cr_{0.06}, and \ Ba_{0.14}Ga_2O_4 \vdots \ Cr_{0.06} \ PersL \ phosphors \ Decays \ D$

(Data correspond to the samples in Fig. S1).

Fig. S3. Excitation spectra of BaGa₂O₄: Cr_{0.06} PersL phosphors.

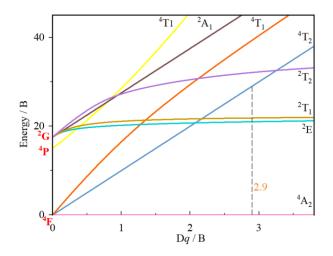


Fig. S4 Tanabe-Sugano energy diagram of a 3d³ system.

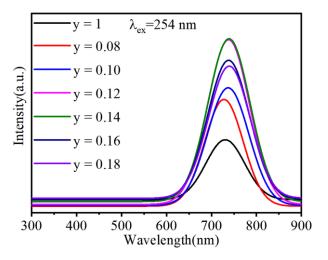


Fig. S5. Emission spectra of BayGa2O4: Cr0.06 (y=0.08, 0.10, 0.12, 0.14, 0.16, 0.18, and 1) PersL phosphors.

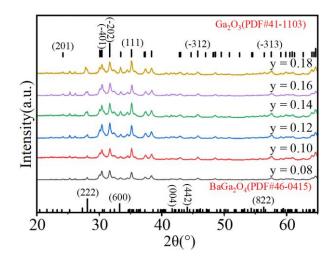
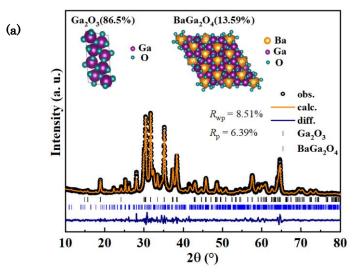



Fig. S6. XRD patterns of BayGa₂O₄: Cr_{0.06} (y=0.08, 0.10, 0.12, 0.14, 0.16, 0.18) PersL phosphors.

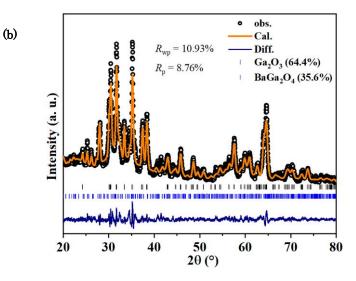


Fig. S7. Rietveld structure refinement patterns of (a) Ba_{0.08}Ga₂O₄: Cr_{0.06}, (b) Ba_{0.14}Ga₂O₄: Cr_{0.06}, inset of (a) represents the crystal structures of Ga₂O₃ and BaGa₂O₄.

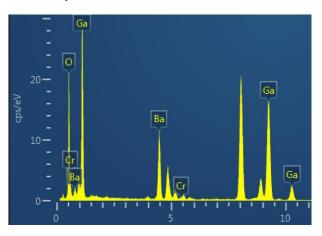


Fig. S8. EDS spectra of BaGa₂O₄: Cr_{0.06} PersL phosphors.

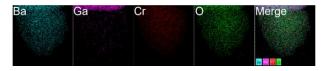


Fig. S9. Elemental distribution of BaGa₂O₄: Cr_{0.06} PersL phosphors.

Acknowledgement

The work is supported by National Natural Science Foundation of China (NSFC) (21867014); Science and Technology Talents Training Project of "Tianshan Youth" Program of Xinjiang Uygur Autonomous Region (2017Q086).

References

1 H. F. Wang, X. Chen, F. Feng, X. Ji, and Y. Zhang, "EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr³⁺-doped zinc gallate", Chem. Sci. 9, 8923(2018).