Author Affiliations
Abstract
1 Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
3 Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design, Singapore 487372, Singapore
Terahertz vortices prompt numerous advanced applications spanning classical and quantum communications, sensing, and chirality-based detection, owing to the inherent physical properties of terahertz waves and orbital angular momentum (OAM). Nonetheless, existing methodologies for generating terahertz vortices face challenges such as unalterable topological charges and intricate feed networks. To address these limitations, we propose a novel approach to generate multi-mode and tunable vortex beams based on chiral plasmons. Through eigenmode analysis, the uniform helical gratings are demonstrated to support chiral plasmons carrying OAM. By leveraging their vortex characteristics and introducing modulation into the periodic system, these chiral plasmons are alternatively diffracted into high-purity vortex radiations according to the Bragg law. To validate the theory, the vortex beam emitter is fabricated and measured in the microwave regime based on the modulated scheme. Experimental results confirm the emission of vortex beams with desirable phase distributions and radiation patterns. Our findings highlight the potential of chiral plasmons as seeds for tunable and compact vortex radiation, offering promising applications in tunable vortex sources.
Photonics Research
2023, 11(10): 1723
Author Affiliations
Abstract
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC)https://ror.org/04qr3zq92, Chengdu 611731, China
2 State Key Laboratory of Terahertz and Millimeter Wave, City University of Hong Kong, Hong Kong 999077, China
3 Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
Optical antennas have received considerable attention in recent years due to their unique ability to convert localized energy to freely propagating radiation and vice versa. Sidelobe level (SLL) is one of the most crucial parameters in antenna design. A low SLL is beneficial to minimize the antenna interference with other optical components. Here a plasmonic optical leaky-wave antenna with low SLL is reported. Shifting spatial frequency by periodically modulating the electric-field amplitude in a plasmonic gap waveguide enables a free-space coupled wave out of the antenna. At the same time, precise control of the aperture fields by the modulation depth allows for reducing SLL. Simulation results indicate that the proposed design can achieve a high directivity of 15.8 dB and a low SLL of -20 dB at the wavelength of 1550 nm. A low SLL below -15 dB is experimentally demonstrated within the wavelength range from 1527 to 1570 nm. In addition, the low-SLL property is further verified by comparing it with a uniformly modulated antenna. By modulating the guided waves in the plasmonic gap waveguide in different forms, the aperture fields can be flexibly arranged to achieve arbitrary wavefront shaping. It bridges the gap between guided and free-space waves and empowers plasmonic integrated devices to control free-space light, thus enabling various free-space functions.
Photonics Research
2023, 11(9): 1500
Author Affiliations
Abstract
1 Mathematics and Physics Department, North China Electric Power Universityhttps://ror.org/04qr5t414, Beijing 102206, China
2 Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power Universityhttps://ror.org/04qr5t414, Baoding 071000, China
3 Department of Physics, Kim Il Sung University, 02-381-4410 Pyongyang, Republic of Korea
4 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
5 e-mail: sj.im@ryongnamsan.edu.kp
6 e-mail: qqwang@sustech.edu.cn
Structured light carrying orbital angular momentum (OAM) opens up a new physical dimension for studying light–matter interactions. Despite this, the complex fields created by OAM beams still remain largely unexplored in terms of their effects on surface plasmons. This paper presents a revelation of anomalous plasmon excitations in single particles and plasmon couplings of neighboring nanorods under OAM beams, which are forbidden using non-OAM sources. The plasmon excitation of single nanoparticles is determined both by photon spin angular momentum (SAM) and OAM and influenced by the locations of the nanoparticles. Specifically, when SAM and OAM are equal in magnitude and opposite in direction, a pure plasmon excitation along light propagation direction is achieved. Two plasmon dipoles show end-to-end antibonding coupling and side-by-side bounding coupling, which are the opposite of the typical couplings. Furthermore, we observe Fano resonance with a nanorod dimer: one aligned along light propagation direction acting as the bright mode and the other aligned along the global polarization direction of light acting as the dark mode, which is the opposite of the usual plasmonic Fano resonance. By taking advantage of the unique property of the OAM source, this investigation presents a novel way to control and study surface plasmons, and the research of plasmon behavior with OAM would open new avenues for controlling electromagnetic waves and enriching the spectroscopies with more degrees of freedom.
Photonics Research
2023, 11(8): 1423
Author Affiliations
Abstract
1 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technologyhttps://ror.org/01skt4w74, Beijing 100081, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 e-mail: yzhang@cnu.edu.cn
Graphene-based terahertz (THz) metasurfaces combined with metallic antennas have the advantages of ultra-small thickness, electrical tunability, and fast tuning speed. However, their tuning ability is limited by non-independently tunable pixels and low modulation depth due to the ultra-small thickness of graphene. Here, we demonstrate a reconfigurable THz phase modulator with 5×5 independently tunable units enabled by switching the voltages applied on 10 graphene ribbons prepared by laser cutting. In addition, by introducing quasi-bound states in the continuum resonance through a designed double C-shaped antenna, the efficiency of the device is enhanced by 2.73.6 times under different graphene chemical potentials. Experimental results demonstrate that a focus can be formed, and the focal length is changed from 14.3 mm to 22.6 mm. This work provides potential for compact THz spatial light modulators that may be applied in THz communication, detection, and imaging.
Photonics Research
2023, 11(7): 1185
Author Affiliations
Abstract
1 Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China
2 School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Chiral mirrors can produce spin selective absorption for left-handed circularly polarized (LCP) or right-handed circularly polarized (RCP) waves. However, the previously proposed chiral mirror only absorbs the designated circularly polarized (CP) wave in the microwave frequency band, lacking versatility in practical applications. Here, we propose a switchable chiral mirror based on a pair of PIN diodes. The switchable chiral mirror has four working states, switching from the handedness-preserving mirror to the LCP mirror, RCP mirror, and perfect absorber. The basis of these advances is to change the chirality of two-dimensional (2D) chiral metamaterials and the circular conversion dichroism related to it, which is the first report in the microwave frequency band. Surface current distributions shed light on how switchable chiral mirrors work by handedness-selective excitation of reflective and absorbing electric dipole modes. Energy loss distributions verify the working mechanism. The thickness of the switchable chiral mirror is one-tenth of the working wavelength, which is suitable for integrated manufacturing. The measurement results are in good agreement with the simulation results.
Photonics Research
2023, 11(7): 1154
Author Affiliations
Abstract
Department of Microwave Engineering, Harbin Institute of Technologyhttps://ror.org/01yqg2h08, Harbin 150001, China
Fifth-generation (5G) communication requires spatial multiplexing multiple-input multiple-output systems with integrated hardware. With the increase in the number of users and emergence of the Internet of Things devices, complex beamforming devices have become particularly important in future wireless systems to meet different communication requirements, where independent amplitude and phase modulations are urgently required for integrated beamforming devices. Herein, by utilizing the constructive interference between multiple geometric-phase responses, the mathematical relation for decoupling amplitude and phase modulations in the radiation-type operational mode is derived. Based on this strategy, complex-amplitude radiation-type metasurfaces (RA-Ms) are implemented, with an integrated feeding network. Such metasurfaces exploit full 2π phase modulation and tailorable radiation amplitude in the circular polarization state. Meanwhile, a complex-amplitude retrieval method is developed to design the RA-Ms, enabling precise beamforming performances. On this basis, several functional devices based on the complex-amplitude RA-Ms, including energy-allocable multi-router, shape-editable beam generator, and complex beamformer, are demonstrated in the microwave region. The amplitude-phase decoupling mechanism with the retrieval method merges amplitude and phase modulations, and energy distribution into one compact and integrated electromagnetic component and may find applications in multi-target detection, 5G mobile communication, and short-range ground-to-sea radar.
Photonics Research
2023, 11(6): 986
Author Affiliations
Abstract
1 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Quantum Optics, Leibniz University, Hannover 30167, Germany
4 e-mail: a.b.evlyukhin@daad-alumni.de
5 e-mail: huangchengjun@ime.ac.cn
Directionally scattered surface plasmon polaritons (SPPs) promote the efficiency of plasmonic devices by limiting the energy within a given spatial domain, which is one of the key issues to plasmonic devices. Benefitting from the magnetic response induced in high-index dielectric nanoparticles, unidirectionally scattered SPPs have been achieved via interference between electric and magnetic resonances excited in the particles. Yet, as the magnetic response in low-index dielectric nanoparticles is too weak, the directionally scattered SPPs are hard to detect. In this work, we demonstrate forward scattered SPPs in single low-index polystyrene (PS) nanospheres. We numerically illustrate the excitation mechanism of plasmonic induced electric and magnetic multipole modes, as well as their contributions to forward SPP scattering of single PS nanospheres. We also simulate the SPP scattering field distribution obtaining a forward-to-backward scattering intensity ratio of 50.26:1 with 1 μm PS particle. Then the forward scattered SPPs are experimentally visualized by Fourier transforming the real-space plasmonic imaging to k-space imaging. The forward scattered SPPs from low-index dielectric nanoparticles pave the way for SPP direction manipulation by all types of nanomaterials.
Photonics Research
2023, 11(5): 765
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin Universityhttps://ror.org/012tb2g32, Tianjin 300072, China
2 School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
3 Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China
4 e-mail: caotun1806@dlut.edu.cn
High-performance terahertz (THz) devices with reconfigurable features are highly desirable in many promising THz applications. However, most of the existing reconfigurable THz elements are still limited to volatile responses, single functionality, and time-consuming multistep manufacturing procedures. In this paper, we report a lithography-free approach to create reconfigurable and nonvolatile THz components by exploring the reversible, nonvolatile, and continuous THz modulation capability of the phase change material Ge2Sb2Te5. As a proof of concept, THz gratings with significant Rayleigh anomalies and diffraction as well as ultrathin THz flat lenses with subwavelength and ultra-broadband focusing capabilities are designed and fabricated on ultrathin Ge2Sb2Te5 films using the presented photo-imprint strategy. Moreover, such a method can also be adopted to create more complex THz devices, such as Pancharatnam–Berry phase metasurfaces and grayscale holographic plates. With these findings, the proposed method will provide a promising solution to realize reconfigurable and nonvolatile THz elements.
Photonics Research
2023, 11(4): 669
Author Affiliations
Abstract
1 Department of Physics, University of Ottawahttps://ror.org/03c4mmv16, Ottawa, Ontario K1N 6N5, Canada
2 Iridian Spectral Technologies Ltd, Ottawa, Ontario K1G 6R8, Canada
3 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
4 Institute of Optics and Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
We present octave-wide bandpass filters in the terahertz (THz) region based on bilayer-metamaterial (BLMM) structures. The passband region has a super-Gaussian shape with a maximum transmittance approaching 70% and a typical stopband rejection of 20 dB. The design is based on a metasurface consisting of a metallic square-hole array deposited on a transparent polymer, which is stacked on top of an identical metasurface with a subwavelength separation. The superimposed metasurface structures were designed using finite-difference time-domain (FDTD) simulations and fabricated using a photolithography process. Experimental characterization of these structures between 0.3 and 5.8 THz is performed with a time-domain THz spectroscopy system. Good agreement between experiment and simulation results is observed. We also demonstrated that two superimposed BLMM (2BLMM) devices increase the steepness of the roll-offs to more than 85 dB/octave and enable a superior stopband rejection approaching 40 dB while the maximum transmittance remains above 65%. This work paves the way toward new THz applications, including the detection of THz pulses centered at specific frequencies, and an enhanced time-resolved detection sensitivity toward molecular vibrations that are noise dominated by a strong, off-resonant, driving field.
Photonics Research
2023, 11(4): 526
Author Affiliations
Abstract
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of Chinahttps://ror.org/04qr3zq92, Chengdu 610054, China
2 Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China
3 e-mail: f_y_lee@163.com
4 e-mail: liyuanxun@uestc.edu.cn
Compared to pure vortex waves, the superposition state of spherical waves and vortex waves has enough degrees of freedom to upgrade applications in particle manipulation, information encryption, and large-capacity communications. Here, we propose a new scheme to achieve superposition states and multichannel transmission of vortex and spherical waves. Two transmissive all-silicon metasurfaces that enable mutual interference between linearly polarized (LP) waves in the terahertz region are demonstrated. Type A can achieve interference between x and y polarized waves, while type B can achieve interference between x (or y) and x (or y) polarized waves. The multichannel transmission and superposition states of topological charges of +3, +2, and +4 are designed and demonstrated from theoretical, simulative, and experimental perspectives at 1.1 THz. In addition, the objective fact that the focused superposition state must be observed close to the focal plane is also revealed. The measured results are in good agreement with the theoretical and simulative results. This work provides an idea for the design of ultrathin terahertz devices and could be applied in the fields of information encryption and high-frequency communications.
Photonics Research
2023, 11(3): 485

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!