量子电子学报, 2023, 40 (2): 181, 网络出版: 2023-04-15  

基于半导体光子学器件的太赫兹成像技术研究进展

Research progress on terahertz imaging technology based on semiconductor photonics devices
王长 1,2,*宋高辉 1,2谭智勇 1,2曹俊诚 1,2
作者单位
1 中国科学院上海微系统与信息技术研究所, 太赫兹固态技术重点实验室, 上海 200050
2 中国科学院大学材料与光电研究中心, 北京 100049
摘要
太赫兹(THz) 成像是 THz 技术应用的重要方向之一。基于 THz 量子级联激光器(QCL) 和 THz 量子阱探测器(QWP) 等半导体光子学器件的 THz 成像系统具有结构紧凑、空间分辨率高、成像信噪比较高等优点, 已成为当前研究的热点领域。对国内外关于 THz QCL 和 THz QWP 器件在远场和近场成像应用方面的研究进行了系统综述, 分析了 THz 成像系统的构成和成像效果, 总结了各 THz 成像系统的性能参数情况, 并探讨了 THz 成像系统性能提升的途径及其应用前景。
Abstract
Terahertz(THz) imaging is one of the important directions for the application of THz technology. THz imaging systems based on semiconductor photonics devices such as THz quantum cascade lasers(QCLs) and THz quantum well photodetectors(QWPs) have the advantages of compact structure, high spatial resolution, and high imaging signal-to-noise ratio, and have become the research highlights in the related field. In this paper, the research progress of far-field and near-field imaging systems based on THz QCLand THz QWP devices is systematically reviewed, the composition, mechanism, and performance of these THz imaging systems are carefully described, the performance parameters of each kind of imaging system are summarized, the methods to further improve theperformance of THz imaging system are proposed and their application prospects are also discussed.
参考文献

[1] Lei X L. Current suppression and harmonic generation by intense terahertz fields in semiconductor superlattices [J]. Journal of Applied Physics, 1997, 82(2): 718-721.

[2] Siegel P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[3] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1(1): 26-33.

[4] Liu H C, Song C Y, Wasilewski Z R, et al. Coupled electron-phonon modes in optically pumped resonant intersubband lasers [J]. Physical Review Letters, 2003, 90(7): 077402.

[5] Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures [J]. Physical Review Letters, 2003, 91(23): 237401.

[6] Sun B, Yao J Q. Generation of terahertz wave based on optical methods [J]. Chinese Journal of Lasers, 2006, 33(10): 1349-1359.

[7] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

[8] Zhu Y M, Chen L, Peng Y, et al. Temperature dependence of nonequilibrium transport time of electrons in bulk GaAs investigated by time-domain terahertz spectroscopy [J]. Applied Physics Letters, 2011, 99(2): 022111.

[9] Tian Y, Liu J S, Bai Y F, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation [J]. Nature Photonics, 2017, 11(4): 242-246.

[10] Shi S C, Paine S, Yao Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica [J]. Nature Astronomy, 2017, 1: 0001.

[11] Qiu H S, Zhou L F, Zhang C H, et al. Ultrafast spin current generated from an antiferromagnet [J]. Nature Physics, 2020, 17(3): 388-394.

[12] Zeng H X, Liang H J, Zhang Y X, et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip [J]. Nature Photonics, 2021, 15(10): 751-757.

[13] Zhang X, Hu M, Zhang Z, et al. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band [J]. Carbon, 2021, 183: 225-231.

[14] Shi W, Jiang H, Li M X, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode [J]. Applied Physics Letters, 2014, 104(4): 042108.

[15] Ito H, Kodama S, Muramoto Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4): 709-727.

[16] Khler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417(6885): 156-159.

[17] Richards P L. Bolometers for infrared and millimeter waves [J]. Journal of Applied Physics, 1994, 76(1): 1-24.

[18] Byer N E, Stokowski S E, Venables J D. Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes [J]. Applied Physics Letters, 1975, 27(12): 639-641.

[19] Gornik E. Far infrared light emitters and detectors [J]. Physica B+C, 1984, 127(1-3): 95-103.

[20] Haller E E. Advanced far-infrared detectors [J]. Infrared Physics & Technology, 1994, 35(2-3): 127-146.

[21] Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector [J]. Applied Physics Letters, 2004, 84(20): 4068-4070.

[22] Hu B B, Nuss M C. Imaging with terahertz waves [J]. Optics Letters, 1995, 20(16): 1716-1718.

[23] Chamberlin D R, Robrish P R, Trutna W R, et al. Imaging at 3.4 THz with a quantum-cascade laser [J]. Applied Optics, 2005, 44(1): 121-125.

[24] Kim S M, Hatami F, Harris J S, et al. Biomedical terahertz imaging with a quantum cascade laser [J]. Applied Physics Letters, 2006, 88(15): 153903.

[25] Barbieri S, Alton J, Baker C, et al. Imaging with THz quantum cascade lasers using a Schottky diode mixer [J]. Optics Express, 2005, 13(17): 6497-6503.

[26] Lee A W M, Qin Q, Kumar S, et al. Real-time terahertz imaging over a standoff distance(25 meters) [J]. Applied Physics Letters, 2006, 89(14): 141125.

[27] Danylov A A, Goyette T M, Waldman J, et al. Terahertz inverse synthetic aperture radar(ISAR) imaging with a quantum cascade laser transmitter [J]. Optics Express, 2010, 18(15): 16264-16272.

[28] Ravaro M, Jagtap V, Santarelli G, et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling [J]. Applied Physics Letters, 2013, 102(9): 091107.

[29] Dean P, Lim Y L, Valavanis A, et al. Terahertz imaging through self-mixing in a quantum cascade laser [J]. Optics Letters, 2011, 36(13): 2587-2589.

[30] Mezzapesa F P, Columbo L L, Brambilla M, et al. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers [J]. Applied Physics Letters, 2014, 104(4): 041112.

[31] Wienold M, Hagelschuer T, Rothbart N, et al. Real-time terahertz imaging through self-mixing in a quantum-cascade laser [J]. Applied Physics Letters, 2016, 109(1): 011102.

[32] Qi X Q, Bertling K, Taimre T, et al. Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback [J]. APL Photonics, 2021, 6(9): 091301.

[33] Zhou T, Zhang R, Guo X G, et al. Terahertz imaging with quantum-well photodetectors [J]. IEEE Photonics Technology Letters, 2012, 24(13): 1109-1111.

[34] Tan Z Y, Zhou T, Cao J C, et al. Terahertz imaging with quantum-cascade laser and quantum-well photodetector [J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344-1346.

[35] Tan Z Y, Zhou T, Fu Z L, et al. Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector [J]. Electronics Letters, 2014, 50(5): 389-391.

[36] Qiu F C, Tan Z Y, Fu Z L, et al. Reflective scanning imaging based on a fast terahertz photodetector [J]. Optics Communications, 2018, 427: 170-174.

[37] Qiu F C, Fu Y Z, Wang C, et al. Fast terahertz refective scanning imaging with a quantum cascade laser and a photodetector [J]. Applied Physics B, 2019, 125(5): 86.

[38] Qiu F C, Tan Z Y, Wang C, et al. Terahertz optical scanning imaging of motionless polyurethane insulation materials [J]. Electronics Letters, 2019, 55(19): 1053-1055.

[39] Zhou T, Tan Z Y, Gu L, et al. Three-dimensional imaging with terahertz quantum cascade laser and quantum well photodetector [J]. Electronics Letters, 2015, 51(1): 85-86.

[40] Tan Z Y, Gu L, Xu T H, et al. Real-time reflection imaging with terahertz camera and quantum-cascade laser [J]. Chinese Optics Letters, 2014, 12(7): 070401.

[41] Tan Z Y, Wan W J, Wang C, et al. Subwavelength resolved terahertz real-time imaging based on a compact and simplified system [J]. Chinese Optics Letters, 2022, 20(9): 091101.

[42] Zhou Z T, Zhou T, Zhang S Q, et al. Multicolor T-ray imaging using multispectral metamaterials [J]. Advanced Science, 2018, 5(7): 1700982.

[43] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices [J]. Nano Letters, 2008, 8(11): 3766-3770.

[44] Dai G B, Yang Z B, Geng G S, et al. Signal detection techniques for scattering-type scanning near-field optical microscopy [J]. Applied Spectroscopy Reviews, 2018, 3: 806-835.

[45] Cocker T L, Jelic V, Hillenbrand R, et al. Nanoscale terahertz scanning probe microscopy [J]. Nature Photonics, 2021, 15(8): 558-569.

[46] Yu N F, Diehl L, Cubukcu E, et al. Near-field imaging of quantum cascade laser transverse modes [J]. Optics Express, 2007, 15(20): 13227-13235.

[47] Dean P, Mitrofanov O, Keeley J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser [J]. Applied Physics Letters, 2016, 108(9): 091113.

[48] Degl’Innocenti R, Wallis R, Wei B B, et al. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser [J]. ACS Photonics, 2017, 4(9): 2150-2157.

[49] Qiu F C, You G J, Tan Z Y, et al. A terahertz near-field nanoscopy revealing edge fringes with a fast and highly sensitive quantum-well photodetector [J]. iScience, 2022, 25(7): 104637.

[50] Moon K, Do Y, Lim M, et al. Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes [J]. Applied Physics Letters, 2012, 101(1): 011109.

[51] Kuschewski F, von Ribbeck H G, Dring J, et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz [J]. Applied Physics Letters, 2016, 108(11): 113102.

[52] Liewald C, Mastel S, Hesler J, et al. All electronic terahertz nanoscopy [J]. Optica, 2018, 5(2): 159-163.

[53] Chen X Z, Liu X, Guo X D, et al. THz near-field imaging of extreme subwavelength metal structures [J]. ACS Photonics, 2020, 7(3): 687-694.

[54] Li L H, Chen L, Freeman J R, et al. Multi-watt high-power THz frequency quantum cascade lasers [J]. Electronics Letters, 2017, 53(12): 799-800.

[55] Wan W J, Li H, Cao J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation [J]. Optics Express, 2018, 26(2): 980-989.

[56] Khalatpour A, Paulsen A K, Deimert C, et al. High-power portable terahertz laser systems [J]. Nature Photonics, 2021, 15(1): 16-20.

王长, 宋高辉, 谭智勇, 曹俊诚. 基于半导体光子学器件的太赫兹成像技术研究进展[J]. 量子电子学报, 2023, 40(2): 181. WANG Chang, SONG Gaohui, TAN Zhiyong, CAO Juncheng. Research progress on terahertz imaging technology based on semiconductor photonics devices[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 181.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!