量子电子学报, 2023, 40 (2): 275, 网络出版: 2023-04-15  

基于GaAs表面等离子体栅阵结构的太赫兹调制器

A terahertz modulator based on GaAs surface plasma grating array structure
作者单位
深圳大学医学部生物医学工程学院, 广东 深圳 518000
摘要
太赫兹波具有载频高、带宽大、频谱信息丰富等特点, 其在高速通信、分子检测和生物医学成像等领域的潜力已得到广泛关注。太赫兹调制器是太赫兹检测系统中的关键器件, 但是当前已报道的调制器都不能同时具备高效、高速、低插入损耗等特点。因此, 提出并设计了一种基于 GaAs 肖特基二极管结合表面等离子体栅阵结构的电控太赫兹调制器。该器件将谐振腔和金属栅阵的电场增强效应相互叠加, 大幅提升了器件的调制性能, 实现了 0.4~1.4 THz 范围内多频点调制, 最高调制深度约为 80%, 插入损耗低于 10 dB,调制速度大于 100 kHz。
Abstract
Due to its high carrier frequency, large bandwidth and rich spectral information, terahertz waves have been widely concerned for their potential in high-speed communication, molecular detection, and biomedical imaging. Terahertz modulator is a key device in terahertz detection system, but the currently reported modulators cannot have the characteristics of high efficiency, high speed and low insertion loss at the same time. Therefore, an electronically controlled terahertz modulator based on a GaAs Schottky diode combined with a surface plasma gate array structure is proposed and designed. The device superimposes the electric field enhancement effects of the resonant cavity and the metal gate array on each other, which significantly improves the modulation performance of the device and achieves multi-frequency modulation in the range of 0.4 to 1.4 THz with a maximum modulation depth of about 80%, insertion loss lower than 10 dB, and modulation speed greater than 100 kHz.
参考文献

[1] Akyildiz I F, Han C, Hu Z, et al. Terahertz band communication: An old problem revisited and research directions for the next decade [J]. IEEE Transactions on Communications, 2022, 70(6): 4250-4285.

[2] Sarieddeen H, Saeed N, Al-Naffouri T Y, et al. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization [J]. IEEE Communications Magazine, 2020, 58(5): 69-75.

[3] Alexiou A, Andreev S, Fodor G, et al. THz communications: A catalyst for the wireless future [J]. IEEE Communications Magazine, 2020, 58(11): 12-13.

[4] Zhou X T, Jiang Y H, Guo C F, et al. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775.

[5] Sun Q S, He Y Z, Liu K, et al. Recent advances in terahertz technology for biomedical applications [J]. Quantitative Imaging in Medicine and Surgery, 2017, 7(3): 345-355.

[6] Liu Y, Liu H, Tang M Q, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: Opportunities and challenges [J]. RSC Advances, 2019, 9(17): 9354-9363.

[7] Li D D, Yang Z B, Fu A L, et al. Detecting melanoma with a terahertz spectroscopy imaging technique [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234: 118229.

[8] Bowman T, Chavez T, Khan K, et al. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors [J]. Journal of Biomedical Optics, 2018, 23(2): 026004.

[9] Stantchev R I, Yu X, Blu T, et al. Real-time terahertz imaging with a single-pixel detector [J]. Nature Communications, 2020, 11(1): 2535.

[10] Wu D X, Luo J W, Huang G Q, et al. Imaging biological tissue with high-throughput single-pixel compressive holography [J]. Nature Communications, 2021, 12(1): 4712.

[11] Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic supersampling [J]. Science Advances, 2017, 3(4): e1601782.

[12] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector [J]. Science Advances, 2016, 2(6): e1600190.

[13] Hu Y Q, Wang X D, Luo X H, et al. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications [J]. Nanophotonics, 2020, 9(12): 3755-3780.

[14] Banerjee S, Abhishikth N L, Karmakar S, et al. Modulating extraordinary terahertz transmissions in multilayer plasmonic metasurfaces [J]. Journal of Optics, 2020, 22(12): 125101.

[15] Gupta M, Singh R. Active energy-efficient terahertz metasurfaces based on enhanced in-plane electric field density [J]. Advanced Optical Materials, 2022, 10(15): 2200327.

[16] Chen Z F, Chen X Q, Tao L, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation [J]. Nature Communications, 2018, 9(1): 4909.

[17] Tang P R, Li J, Zhong S C, et al. Giant dual-mode graphene-based terahertz modulator enabled by Fabry-Perot assisted multiple reflection [J]. Optics Letters, 2019, 44(7): 1630-1633.

[18] Liu X D, Chen H, Liang S X, et al. Ultrabroadband electrically controllable terahertz modulation based on GaAs Schottky diode structure [J]. APL Photonics, 2021, 6(11): 111301.

[19] Zhao Y C, Wang L, Zhang Y X, et al. High-speed efficient terahertz modulation based on tunable collective-individual state conversion within an active 3 nm two-dimensional electron gas metasurface [J]. Nano Letters, 2019, 19(11): 7588-7597.

[20] Shi S F, Zeng B, Han H L, et al. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures [J]. Nano Letters, 2015, 15(1): 372-377.

[21] Sun Y W, Degl’Innocenti, Ritchie D A, et al. Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry [J]. Photonics Research, 2018, 6(12): 1151-1157.

[22] Liu X D, Jia M Y, Fan S T, et al. Deep THz modulation at Fabry-Perot resonances using graphene in periodic microslits [J]. Optics Express, 2021, 29(4): 6199-6208.

[23] Wang M T, Wang M Y, Guo J, et al. Metal nanowire array surface plasmon electro-optic modulator [J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 493-498.

[24] Chen X Y, Tian Z, Lu Y C, et al. Electrically tunable perfect terahertz absorber based on a graphene salisbury screen hybrid metasurface [J]. Advanced Optical Materials, 2020, 8(3): 1900660.

[25] Zeng H X, Gong S, Wang L, et al. A review of terahertz phase modulation from free space to guided wave integrated devices [J]. Nanophotonics, 2021, 11(3): 415-437.

[26] Shur M S. Terahertz plasmonic technology [J]. IEEE Sensors Journal, 2021, 21(11): 12752-12763.

[27] Sun Y, Chen H, Liang S, et al. Exploiting total internal reflection geometry for deep broadband terahertz modulation using a GaAs Schottky diode with integrated subwavelength metal microslits [J]. Optics Express, 2022, 30(18): 31567-31576.

[28] Xiao H P, Zhu D. Properties of AuGe/Au on GaAs annealing treatment [J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 730-735.

[29] Qiao J, Wang S P, Wang Z M, et al. Ultrasensitive and broadband all-optically controlled THz modulator based on MoTe2/Si van der Waals heterostructure [J]. Advanced Optical Materials, 2020, 8(17): 2000160.

[30] Chen Z F, Chen X Q, Tao L, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation [J]. Nature Communications, 2018, 9(1): 4909.

[31] Mu Q Y, Fan F, Chen S, et al. Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure [J]. Photonics Research, 2019, 7(3): 325-331.

汪辰宇, 廖宇, 梅志杰, 刘旭东, 孙怡雯. 基于GaAs表面等离子体栅阵结构的太赫兹调制器[J]. 量子电子学报, 2023, 40(2): 275. WANG Chenyu, LIAO Yu, MEI Zhijie, LIU Xudong, SUN Yiwen. A terahertz modulator based on GaAs surface plasma grating array structure[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 275.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!