人工晶体学报, 2023, 52 (3): 467, 网络出版: 2023-04-13  

Mg3Bi2/Mg2Sn纳米复合膜的微结构及热电性能

Microstructure and Thermoelectric Properties of Mg3Bi2/Mg2Sn Nanocomposite Films
作者单位
沈阳工业大学材料科学与工程学院, 沈阳 110870
摘要
利用高真空磁控溅射技术, 通过高纯Mg靶和自制Mg-Bi-Sn合金靶的顺序溅射沉积, 制备了Mg3Bi2/Mg2Sn纳米复合薄膜。沉积薄膜的晶体结构和相组成由X射线衍射(XRD)图谱确定, 表面形貌和化学成分用场发射扫描电子显微镜(FESEM)和能谱仪(EDS)进行观察、测量和分析。沉积薄膜的载流子浓度和迁移率通过霍尔实验获得, 电导率和Seebeck系数由Seebeck/电阻测试分析系统进行测量。结果表明, 沉积薄膜由Mg3Bi2和Mg2Sn两相组成, 随着薄膜中Mg2Sn含量的增加, 沉积薄膜的室温载流子浓度增加而迁移率下降。在整个测试温度范围内, 随薄膜中Mg2Sn含量的增加, 薄膜Seebeck系数不断升高而电导率下降。Mg2Sn相原子含量为28.22%的沉积薄膜在155 ℃获得最高功率因子为1.2 mW·m-1·K-2。在Mg3Bi2薄膜中加入适量的Mg2Sn第二相, 可明显提升Mg3Bi2薄膜材料的功率因子。
Abstract
Mg3Bi2/Mg2Sn nanocomposite films were prepared by high vacuum magetron sputtering with alternately sputtering on single crystalline Si substrate containing SiO2 layer of 500 nm thickness using high-purity Mg target and self-made Mg-Bi-Sn alloy target. The crystal structure and phase composition of the deposited films were determined by X-ray diffraction (XRD) patterns. The morphology and surface chemical composition of the deposited films were observed, measured and analyzed by field emission scanning electron microscopy (FESEM) and energy dispersive spectrum (EDS), respectively. The carrier concentration and mobility of the deposited films were obtained by Hall experiment. The electrical conductivity and Seebeck coefficient of the deposited films were measured by Seebeck/resistance measure and analysis system. The results show that the nanocomposite film is composed of Mg3Bi2 and Mg2Sn phase. Measurement and calculation of half height width of the diffraction peak for Mg2Sn phase show that the grain size of Mg2Sn phase in the deposited films is 13 nm to 16 nm. With the increase of Mg2Sn phase contents, the carrier concentration increases and the mobility decreases at room temperature. The phase interface is the barrier to carrier transmission, the carrier mobility decreases because of more phase interface. In the whole measured temperature range, the Seebeck coefficient increases and the conductivity decreases with the increase of Mg2Sn phase contents in the deposited film. The energy filtering effect at the phase interface causes carriers with lower energy to be filtered out, and the energy of carriers in the film is more concentrated, namely, the dp(E)/dE increases, causing Seebeck coefficient increases with the increase of phase interface. The film with 28.22% Mg2Sn atomic content of phase can obtain the highest power factor value of 1.2 mW·m-1·K-2 at 155 ℃. The power factor of Mg3Bi2 film can be significantly improved by adding proper amount of Mg2Sn second phase into Mg3Bi2 film, forming nanocomposite films.
参考文献

[1] JIANG B B, LIU X X, WANG Q, et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials[J]. Energy & Environmental Science, 2020, 13(2): 579-591.

[2] WANG J Y, LIU B, MIAO N H, et al. I-doped Cu2Se nanocrystals for high-performance thermoelectric applications[J]. Journal of Alloys and Compounds, 2019, 772: 366-370.

[3] TOSHIMA N. Recent progress of organic and hybrid thermoelectric materials[J]. Synthetic Metals, 2017, 225: 3-21.

[4] FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 635-659.

[5] WANG N, SONG G H, LI G P, et al. Thermoelectric properties of β-(Cu, Mn)2Se films with high (111) preferred orientation[J]. Vacuum, 2022, 197: 110845.

[6] PENG P, GONG Z N, LIU F S, et al. Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm[J]. Intermetallics, 2016, 75: 72-78.

[7] JUNG S C, HAN Y K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17643-17649.

[8] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495-498.

[9] SONG S W, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25-33.

[10] MAO J, WU Y X, SONG S W, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials[J]. ACS Energy Letters, 2017, 2(10): 2245-2250.

[11] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.

[12] ZHOU T, TONG M Y, ZHANG Y, et al. Topological phase transition in Sb-doped Mg3Bi2 monocrystalline thin films[J]. Physical Review B, 2021, 103(12): 125405.

[13] LIANG Z, XU C, SHANG H, et al. High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3[J]. Materials Today Physics, 2021, 19: 100413.

[14] MO X B, LIAO J S, YUAN G C, et al. High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping[J]. Journal of Magnesium and Alloys, 2022, 10(4): 1024-1032.

[15] PAN Y, YAO M Y, HONG X C, et al. Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance[J]. Energy & Environmental Science, 2020, 13(6): 1717-1724.

[16] SHANG H, ZHANG J, GU H, et al. Depressed lattice oxygen and improved thermoelectric performance in N-type Mg3Bi2-Sb via La-doping[J]. Materials Today Physics, 2021, 21: 100485.

[17] SADOWSKI G, ZHU Y B, SHU R, et al. Epitaxial growth and thermoelectric properties of Mg3Bi2 thin films deposited by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(5): 051901.

[18] FANG W Q, ZHU W Y , SHAO Y M, et al. Formation of metastable cubic phase and thermoelectric properties in Mg3Bi2 films deposited by magnetron sputtering[J]. Applied Surface Science, 2022, 596: 153602.

[19] 宋贵宏, 李秀宇, 李贵鹏, 等. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.

[20] SAFAVI M, MARTIN N, LINSERS V, et al. Thermoelectric properties improvement in Mg2Sn thin films by structural modification[J]. Journal of Alloys and Compounds, 2019, 797: 1078-1085.

[21] LIU Y, SONG G H, LI G P, et al. Thin films of thermoelectric Mg2Sn containing nano-sized metal Sn phase by magnetron sputtering[J]. Chemical Physics Letters, 2022, 788: 139305.

[22] ZHU C, ZHANG J, MING H W, et al. Enhanced thermoelectric performance of PbTe based materials by Bi doping and introducing MgO nanoparticles[J]. Applied Physics Letters, 2020, 117(4): 042105.

杨爽, 宋贵宏, 陈雨, 冉丽阳, 胡方, 吴玉胜, 尤俊华. Mg3Bi2/Mg2Sn纳米复合膜的微结构及热电性能[J]. 人工晶体学报, 2023, 52(3): 467. YANG Shuang, SONG Guihong, CHEN Yu, RAN Liyang, HU Fang, WU Yusheng, YOU Junhua. Microstructure and Thermoelectric Properties of Mg3Bi2/Mg2Sn Nanocomposite Films[J]. Journal of Synthetic Crystals, 2023, 52(3): 467.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!