应用激光, 2023, 43 (2): 40, 网络出版: 2023-03-30  

选区激光熔化成形316L不锈钢的显微组织结构

Microstructure of 316L Stainless Steel Formed by Selective Laser Melting
作者单位
长沙理工大学能源与动力工程学院, 湖南 长沙 410076
摘要
利用光学显微镜(OM)、X射线衍射(XRD)、电子背散射衍射(EBSD)等方法, 对比研究了热轧和选区激光熔化(SLM)成形316L不锈钢水平面(X-Y面)和建造面(X-Z面)显微组织特征。结果表明, 两种方法制备的316L不锈钢均主要由奥氏体相组成。与轧制合金相比, SLM制备的316L不锈钢有着更多的低角度晶界和亚晶界, 位错密度更大。其中, SLM成形316L不锈钢X-Y面存在平行于(110)方向上的织构, X-Z面存在平行于(001)方向上的织构。X-Y面上晶粒取向偏离(001)方向, 可能与重熔过程中复杂的热流有关; X-Z面在(001)方向上存在织构且在(001)的织构指数最大, 这是因为在SLM成形过程中, 晶体的生长方式与建造方向平行, 且晶粒沿着(001)方向散热最快, 因此晶粒沿(001)方向呈择优生长。
Abstract
The microstructure of cross sections (i.e. X-Y and X-Z), which are perpendicular to and parallel to the rolling or build-up directions for the hot rolled or selective laser melting (SLM) built 316L stainless steel blocks, respectively, was characterized by means of optical microscopy (OM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). Results show that the 316L stainless steel prepared by the two methods mainly consists of austenitic phases. In comparison to the rolled 316L stainless steel, the SLM built 316L stainless steel has much more low angle grain boundaries and sub-grain boundaries, as well as higher dislocation density. It could be observed that the SLM-316L stainless steel shows a preferred texture parallel to (110) direction in X-Y plane and (001) direction in X-Z plane. The deviation of grain orientation from the (001) direction on the X-Y plane may be related to the complex heat flow during the laser remelting process. Texture is available in the (001) direction in the X-Z plane, and the texture index is the largest at (001), which is related that the crystals grow parallel to the build-up direction. Moreover, the heat dissipation is the heat fastest along the (001) direction during the SLM process; therefore, grains grow preferentially along (001) in shape of strips.
参考文献

[1] GIBSON I, ROSEN D W, STUCKER B, et al. Direct digital manufacturing[J]. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2010: 378-399.

[2] CAMPANELLI S L, CONTUZZI N, ANGELASTRO A, et al. Capabilities and performances of the selective laser melting process[J]. New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, 2010, 1(1): 233-252.

[3] YAP C Y, CHUA C K, DONG Z L, et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4): 041101.

[4] GARIBALDI M, ASHCROFT I, SIMONELLI M, et al. Metallurgy of high-silicon steel parts produced using Selective Laser Melting[J]. Acta Materialia, 2016, 110: 207-216.

[5] QIU C L, ADKINS N J E, ATTALLAH M M. Selective laser melting of Invar 36: Microstructure and properties[J]. Acta Materialia, 2016, 103: 382-395.

[6] 陈忠旭, 姚锡禹, 郭亮, 等. 基于激光的金属增材制造技术评述与展望[J]. 机电工程技术, 2017, 46(1): 7-13.

[7] 杨永强, 罗子艺, 苏旭彬, 等. 不锈钢薄壁零件选区激光熔化制造及影响因素研究[J]. 中国激光, 2011, 38(1): 0103001.

[8] 陈继民, 窦阳, 晏恒峰, 等. 选区激光熔化316L不锈钢粉多道搭接工艺的研究[J]. 应用激光, 2017, 37(6): 787-792.

[9] LIVERANI E, TOSCHI S, CESCHINI L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 249: 255-263.

[10] ALVI S, SAEIDI K, AKHTAR F. High temperature tribology and wear of selective laser melted (SLM) 316L stainless steel[J]. Wear, 2020, 448/449: 203228.

[11] DUAN Z W, MAN C, DONG C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores[J]. Corrosion Science, 2020, 167: 108520.

[12] 许明三, 张正, 黄旭. 能量密度对SLM成形316L致密度与耐磨性能的影响研究[J]. 应用激光, 2021, 41(3): 431-438.

[13] SUN Y, MOROZ A, ALRBAEY K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel[J].Journal of Materials Engineering and Performance, 2014, 23(2): 518-526.

[14] LI C, FU C H, GUO Y B, et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting[J]. Journal of Materials Processing Technology, 2016, 229: 703-712.

[15] 宗学文, 刘文杰, 徐文博, 等. 激光选区熔化316L不锈钢的表面形貌和硬度研究[J]. 应用激光, 2020, 40(4): 587-592.

[16] 郑金辉, 门正兴, 孟毅, 等. 航空发动机小型超薄叶片激光选区熔化成形质量分析[J]. 应用激光, 2020, 40(4): 605-609.

[17] 陈玉娟. 选区激光熔化316L不锈钢复合材料工艺及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

[18] WEI H L, MAZUMDER J, DEBROY T. Evolution of solidification texture during additive manufacturing[J]. Scientific Reports, 2015, 5: 16446.

[19] YAN F Y, XIONG W, FAIERSON E. Grain structure control of additively manufactured metallic materials[J]. Materials, 2017, 10(11): 1260.

[20] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213(4): 606-613.

[21] 李婧. 选区激光熔化成形TiC/316L不锈钢复合材料组织性能的研究[D]. 太原: 中北大学, 2020.

[22] 杨平. 电子背散射衍射技术及其应用[M]. 北京: 冶金工业出版社, 2007.

[23] LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136: 90-104.

[24] KAMAYA M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 2009, 60(2): 125-132.

[25] 贺可太, 周柳, 杨乐昌. 选区激光熔化中316L不锈钢的组织与力学性能[J]. 激光与光电子学进展, 2020, 57(9): 091404.

[26] SAEIDI K, GAO X, ZHONG Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting[J]. Materials Science and Engineering: A, 2015, 625: 221-229.

[27] 李俊俊, 邓运来, 郭晓斌. 6082铝合金锻件中晶粒亚结构与析出相的演变及其对性能的影响[J]. 中国有色金属学报, 2022, 32(8): 2209-2221.

黄杰, 任延杰, 陶明生, 周立波, 邱玮, 黄伟颖, 陈荐, 牛焱. 选区激光熔化成形316L不锈钢的显微组织结构[J]. 应用激光, 2023, 43(2): 40. Huang Jie, Ren Yanjie, Tao Mingsheng, Zhou Libo, Qiu Wei, Huang Weiying, Chen Jian, Niu Yan. Microstructure of 316L Stainless Steel Formed by Selective Laser Melting[J]. APPLIED LASER, 2023, 43(2): 40.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!