光学学报, 2021, 41 (8): 0823004, 网络出版: 2021-04-10   

人工智能超材料 下载: 2899次特邀综述

Artificial Intelligence Metamaterials
刘彻 1,2马骞 1,2李廉林 3崔铁军 1,2,*
作者单位
1 东南大学电磁空间科学与技术研究院, 江苏 南京 210096
2 东南大学毫米波国家重点实验室, 江苏 南京 210096
3 北京大学先进光通信系统与网络国家重点实验室, 北京 100871
引用该论文

刘彻, 马骞, 李廉林, 崔铁军. 人工智能超材料[J]. 光学学报, 2021, 41(8): 0823004.

Che Liu, Qian Ma, Lianlin Li, Tiejun Cui. Artificial Intelligence Metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004.

参考文献

[1] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.

[2] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[3] Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.

[4] Pironkov G, Wood S U, Dupont S. Hybrid-task learning for robust automatic speech recognition[J]. Computer Speech & Language, 2020, 64: 101103.

[5] GravesA, Mohamed AR, HintonG. Speech recognition with deep recurrent neural networks[C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, Canada. New York: IEEE, 2013: 6645- 6649.

[6] KongL. Intelligent recognition system for high precision image significant features in large data background[M] ∥Advances in Intelligent Systems and Computing. Cham: Springer, 2019: 1056- 1062.

[7] TongT, MuX, ZhangL, et al. MBVCNN: joint convolutional neural networks method for image recognition[C]∥ Materials Science, Energy Technology, and Power Engineering I, April 15-16, 2017, Hangzhou, China. New York: American Institute of Physics, 2017, 1839: 020091.

[8] SunH, ZhangQ, WangH, et al. Research of images recognition method based on rbf neural network[C]∥ 2012 7th International Conference on System of Systems Engineering, July 16-19, 2012, Genoa, Italy. New York: IEEE, 2012: 24- 26.

[9] ChoK, Merrienboer BV, GulcehreC, et al. ( 2014-09-03)[2020-06-01]. http:∥emnlp2014.org/papers/pdf/EMNLP2014179.pdf.

[10] Escolano C. Costa-Jussà M R, Fonollosa J A R. From bilingual to multilingual neural-based machine translation by incremental training[J]. Journal of the Association for Information Science and Technology, 2020: 1-14.

[11] Kwon S, Go B H, Lee J H. A text-based visual context modulation neural model for multimodal machine translation[J]. Pattern Recognition Letters, 2020, 136: 212-218.

[12] Goodfellow IJ, Pouget-AbadieJ, MirzaM, et al. ( 2014-12-03)[2020-06-01]. https:∥papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[13] LedigC, TheisL, HuszarF, et al. ( 2017-05-25)[2020-06-01]. https:∥arxiv.org/abs/1609. 04802.

[14] ChoiY, ChoiM, KimM, et al. StarGAN: unified generative adversarial networks for mlti-domain image-to-image translation[C]∥2018 IEEE/Cvf Conference on Computer Vision and Pattern Recognition, July 18-23, 2018, Salt Lake City, America. New York: IEEE, 2018: 8789- 8797.

[15] Xiao J, Bi X J. Multi-scale attention generative adversarial networks for video frame interpolation[J]. IEEE Access, 2020, 8: 94842-94851.

[16] He C Y, Wan Y, Gu Y X, et al. Integral reinforcement learning-based multi-robot minimum time-energy path planning subject to collision avoidance and unknown environmental disturbances[J]. IEEE Control Systems Letters, 2020, 5(3): 983-988.

[17] Sangiovanni B, Incremona G P, Piastra M, et al. Self-configuring robot path planning with obstacle avoidance via deep reinforcement learning[J]. IEEE Control Systems Letters, 2021, 5(2): 397-402.

[18] Yoo J, Jang D, Kim H J, et al. Hybrid reinforcement learning control for a micro quadrotor flight[J]. IEEE Control Systems Letters, 2021, 5(2): 505-510.

[19] Acernese A, Yerudkar A, Glielmo L, et al. Reinforcement learning approach to feedback stabilization problem of probabilistic Boolean control networks[J]. IEEE Control Systems Letters, 2020, 5(1): 337-342.

[20] Zhao H, Zhao J H, Qiu J, et al. Cooperative wind farm control with deep reinforcement learning and knowledge-assisted learning[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6912-6921.

[21] Veselago V G. The electrodynamics of substances with simultaneously negative values of ∈ and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[22] Parazzoli C G, Greegor R B, Li K, et al. Experimental verification and simulation of negative index of refraction using Snell's law[J]. Physical Review Letters, 2003, 90(10): 107401.

[23] Drachev V P, Cai W, Chettiar U, et al. Experimental verification of an optical negative-index material[J]. Laser Physics Letters, 2006, 3(1): 49-55.

[24] Maystre D R, Enoch S, Tayeb G. Ultrarefraction and negative refraction in metamaterials[J]. Proceedings of SPIE, 2004, 5359: 64-75.

[25] Chen X, Luo Y, Zhang J, et al. Macroscopic invisibility cloaking of visible light[J]. Nature Communications, 2011, 2: 176.

[26] Zhang B, Luo Y, Liu X, et al. Macroscopic invisibility cloak for visible light[J]. Physical Review Letters, 2011, 106(3): 033901.

[27] Cheng Q, Jiang W X, Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physical Review Letters, 2012, 108(21): 213903.

[28] Zhou H, Pei Z, Qu S, et al. A planar zero-index metamaterial for directive emission[J]. Journal of Electromagnetic Waves and Applications, 2009, 23(7): 953-962.

[29] Zhou L, Li H Q, Qin Y Q, et al. Directive emissions from subwavelength metamaterial-based cavities[J]. Applied Physics Letters, 2005, 86(10): 101101.

[30] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403.

[31] Liu R, Cheng Q, Hand T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903.

[32] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

[33] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[34] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

[35] Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

[36] Lin J. Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334.

[37] Miroshnichenko A E, Kivshar Y S. Polarization traffic control for surface plasmons[J]. Science, 2013, 340(6130): 283-284.

[38] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

[39] Qu C, Ma S, Hao J, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23): 235503.

[40] Pendry J B. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

[41] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[42] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780.

[43] Li J, Pendry J B. Hiding under the carpet: A new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901.

[44] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369.

[45] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21.

[46] Shin D, Urzhumov Y, Jung Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 2012, 3: 1213.

[47] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339.

[48] Jiang W X, Cui T J, Cheng Q, et al. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letters, 2008, 92(26): 264101.

[49] Lai Y, Ng J, Chen H, et al. Illusion optics: the optical transformation of an object into another object[J]. Physical Review Letters, 2009, 102(25): 253902.

[50] Jiang W X, Cui T J, Yang X M, et al. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letters, 2011, 98(20): 204101.

[51] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132.

[52] Jiang W X, Qiu C-W, Han T C, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963-6968.

[53] Yang X M, Zhou X Y, Cheng Q, et al. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letters, 2010, 35(6): 808-810.

[54] Ning Z L, Li Y, Dong P R, et al. When deep reinforcement learning meets 5G-enabled vehicular networks: a distributed offloading framework for traffic big data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 1352-1361.

[55] Wan S H, Li X, Xue Y, et al. Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks[J]. The Journal of Supercomputing, 2020, 76(4): 2518-2547.

[56] Huang H J, Guo S, Gui G, et al. Deep learning for physical-layer 5G wireless techniques: opportunities, challenges and solutions[J]. IEEE Wireless Communications, 2020, 27(1): 214-222.

[57] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.

[58] Cui T J, Li L L, Liu S, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403.

[59] Cui T J, Liu S, Zhang L. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644-3668.

[60] Li L L, Cui T J. Information metamaterials-from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703-724.

[61] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light, Science & Applications, 2016, 5(11): e16172.

[62] Li J, Zhang Y T, Li J N, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces[J]. Nanoscale, 2019, 11(12): 5746-5753.

[63] Bao L, Ma Q, Bai G D, et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses[J]. Applied Physics Letters, 2018, 113(6): 063502.

[64] Wu R Y, Zhang L, Bao L, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429.

[65] Ma Q, Shi C B, Bai G D, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548.

[66] Sui S, Ma H, Wang J F, et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces[J]. Applied Physics Letters, 2016, 109(1): 014104.

[67] Iqbal S, Liu S, Wu R Y, et al. Polarization-selective dual-band digital coding metasurface for controls of transmitted waves[J]. Journal of Physics D: Applied Physics, 2018, 51(28): 285103.

[68] Ding G W, Chen K, Luo X Y, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043.

[69] Han J Q, Li L, Yi H, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11): 3470-3478.

[70] Zheng Q Q, Li Y F, Han Y J, et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface[J]. Applied Physics A, 2019, 125(2): 1-5.

[71] Zhang L, Chen X Q, Liu S, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334.

[72] Cui T J, Liu S, Bai G D, et al. Direct transmission of digital message via programmable coding metasurface[J]. Research, 2019, 2019: 2584509.

[73] Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231-238.

[74] Shuang Y, Zhao H T, Ji W, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 29-37.

[75] Zhao H T, Shuang Y, Wei M L, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communications, 2020, 11(1): 1-10.

[76] Li L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197.

[77] Li L, Ruan H, Liu C, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082.

[78] Zhang Q, Wan X, Liu S, et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces[J]. Scientific Reports, 2017, 7: 3588.

[79] KennedyJ, Eberhart RC. A discrete binary version of the particle swarm algorithm[C]∥1997 IEEE International Conference on Systems, Man, and Cybernetics, October 12-15, 1997, Orlando, America. New York: IEEE, 1997: 4104- 4108.

[80] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization[J]. Swarm and Evolutionary Computation, 2013, 9: 1-14.

[81] Yin P Y. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves[J]. Journal of Visual Communication and Image Representation, 2004, 15(2): 241-260.

[82] Zhang Q, Liu C, Wan X, et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations, 2019, 2(2): 1800132.

[83] HeK, ZhangX, RenS, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Seattle, America. New York: IEEE, 2016: 770- 778.

[84] Qiu T S, Shi X, Wang J F, et al. Deep learning: a rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128.

[85] Liu D J, Tan Y X, Khoram E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5(4): 1365-1369.

[86] Liu Z C, Zhu D Y, Rodrigues S P, et al. Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18(10): 6570-6576.

[87] Inampudi S, Mosallaei H. Neural network based design of metagratings[J]. Applied Physics Letters, 2018, 112(24): 241102.

[88] Waltz R A, Morales J L, Nocedal J, et al. An interior algorithm for nonlinear optimization that combines line search and trust region steps[J]. Mathematical Programming, 2006, 107(3): 391-408.

[89] Ma W, Cheng F, Xu Y H, et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy[J]. Advanced Materials, 2019, 31(35): 1901111.

[90] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004-1008.

[91] Hwang C Y, Kim G H, Yang J H, et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials[J]. Nanoscale, 2018, 10(46): 21648-21655.

[92] Khoram E, Chen A, Liu D J, et al. Nanophotonic media for artificial neural inference[J]. Photonics Research, 2019, 7(8): 823-827.

[93] Kulkarni K, Turaga P. Reconstruction-free action inference from compressive imagers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 772-784.

[94] Larouche S, Tsai Y J, Tyler T, et al. Infrared metamaterial phase holograms[J]. Nature Materials, 2012, 11(5): 450-454.

[95] Li L L, Shuang Y, Ma Q, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8: 97.

[96] Li H Y, Zhao H T, Wei M L, et al. Intelligent electromagnetic sensing with learnable data acquisition and processing[J]. Patterns, 2020, 1(1): 100006.

[97] Ma Q, Bai G D, Jing H B, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98.

刘彻, 马骞, 李廉林, 崔铁军. 人工智能超材料[J]. 光学学报, 2021, 41(8): 0823004. Che Liu, Qian Ma, Lianlin Li, Tiejun Cui. Artificial Intelligence Metamaterials[J]. Acta Optica Sinica, 2021, 41(8): 0823004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!