应用激光, 2023, 43 (2): 127, 网络出版: 2023-03-30  

用于光学放大的掺铒氧化铝脊型波导研究

Research on Erbium-Doped Al2O3 Ridge Waveguide for Optical Amplification
作者单位
宁波大学高等技术研究院, 红外材料与器件实验室, 浙江 宁波 315211
摘要
使用磁控溅射制备了掺铒氧化铝薄膜, 对薄膜进行了退火处理, 测量薄膜的折射率和X射线衍射图谱, 发现薄膜在600 ℃的退火温度下呈非晶态, 在1.5 μm处的折射率为1.67左右。模拟模场分布, 获得光与掺铒层之间相互作用最大的波导结构参数, 并进一步优化制备条件, 实现侧壁光滑的低损耗掺铒氧化铝脊型波导。在1.31 μm的波长下, 2 μm宽度的氧化铝脊型波导的损耗为1.6 dB/cm, 和使用超快激光灼烧的方法所制备出的损耗为3.8 dB/cm氧化铝脊型波导相比, 损耗大为降低。结果表明, 掺铒氧化铝波导在平面集成波导放大器应用方面极具潜力。
Abstract
Er-doped Al2O3 films were prepared using the magnetron-sputtering method, and the films were thermal-annealed. We measured the refractive index and X-ray diffraction patterns of the films, and it was found that the films were amorphous at annealing temperatures up to 600 ℃, and the refractive index was 1.67 at 1.5 μm. We investigated the correlation between the photoluminescence intensity and Er-doping content, and the optimal deposition conditions for the films were obtained. We simulated the mode field distribution and achieved the structural parameter of the waveguide where the interaction between light and Er-doped layer is the maximum. We further optimized the fabrication conditions and achieved Er-doped Al2O3 waveguide with smooth side wall and low optical loss. The 2 μm-wide waveguide has an optical loss at 1.6 dB/cm at 1.31 μm. Compared with the alumina ridge waveguide with a loss of 3.8 dB/cm prepared by the ultrafast laser ablation method, the loss is greatly reduced, showing the potentials of the Er-doped Al2O3 waveguide used as on-chip optical amplifiers.
参考文献

[1] SONG Q, GAO J S, WANG X Y, et al. Fabrication of Yb3+: Er3+ co-doped Al2O3 ridge waveguides by the dry etching[J]. Optical Engineering, 2007, 46(4): 040509.

[2] DYWEL P, SKOWRON′SKI . Optical characterization of thin Al2O3 layers deposited by magnetron sputtering technique at industrial conditions for applications in glazing[J]. Materials Science-Poland, 2020, 38(1): 108-115.

[3] YANG X, WOO J C, UM D S, et al. Dry etching of Al2O3Thin films in O2/BCl3/Ar inductively coupled plasma[J]. Transactions on Electrical and Electronic Materials, 2010, 11(5): 202-205.

[4] DEMIRTA M, ODAC1 C, PERKGZ N K, et al. Low loss atomic layer deposited Al2O3 waveguides for applications in on-chip optical amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 1-8.

[5] LIZARRAGA-MEDINA E G, CASTILLO G R, JURADO J A, et al. Optical waveguides fabricated in atomic layer deposited Al2O3 by ultrafast laser ablation[J]. Results in Optics, 2021, 2: 100060.

[6] CABALLERO-ESPITIA D L, LIZARRAGA-MEDINA E G, BORBON-NUN~EZ H A, et al. Study of Al2O3 thin films by ALD using H2O and O3 as oxygen source for waveguide applications[J]. Optical Materials, 2020, 109: 110370.

[7] LIN J, LEVEN A, REYES R, et al. Optical waveguide loss induced by metal cladding[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(4): 1361-1363.

[8] PURNAWIRMAN, LI N X, MAGDEN E S, et al. Ultra-narrow-linewidth Al2O3: Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform[J]. Optics Express, 2017, 25(12): 13705-13713.

[9] HENDRIKS W A P M, CHANG L T, VAN EMMERIK C I, et al. Rare-earth ion doped Al2O3 for active integrated photonics[J]. Advances in Physics: X, 2021, 6(1): 1833753.

[10] LOHNER T, SERNYI M, PETRIK P. Characterization of sputtered aluminum oxide films using spectroscopic ellipsometry[J]. International Journal of New Horizons in Physics, 2015, 2(1): 1-4.

[11] JAMNAPARA N I, NAYAK V, AVTANI D U, et al. Al2O3 films grown by glow discharge plasma aluminising[J]. Surface Engineering, 2014, 30(7): 467-474.

[12] HASSANIEN A M, ATTA A A, EL-NAHASS M M, et al. Effect of annealing temperature on structural and optical properties of gallium oxide thin films deposited by RF-sputtering[J]. Optical and Quantum Electronics, 2020, 52(4): 194.

[13] DING J C, ZHANG T F, MANE R S, et al. Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering[J]. Vacuum, 2018, 149: 284-290.

[14] GARCíA-VALENZUELA J A, RIVERA R, MORALES-VILCHES A B, et al. Main properties of Al2O3 thin films deposited by magnetron sputtering of an Al2O3 ceramic target at different radio-frequency power and argon pressure and their passivation effect on p-type c-Si wafers[J]. Thin Solid Films, 2016, 619: 288-296.

[15] MUTTALIB M F A, CHEN R Y, PEARCE S J, et al. Optimization of reactive-ion etching (RIE) parameters for fabrication of tantalum pentoxide (Ta2O5) waveguide using Taguchi method[J]. EPJ Web of Conferences, 2017, 162: 01003.

[16] LI C D, GUO P P, HUANG W, et al. Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off[J]. Journal of the Optical Society of America B, 2019, 37(1): 82.

[17] 郑兰兰, 王文先, 崔泽琴, 等. A12O3陶瓷表面激光铜合金化层微观形貌及物相分析[J]. 应用激光, 2010, 30(2): 91-94.

[18] 李文兵, 汪于涛, 骆公序, 等. 激光退火技术在半导体领域的应用[J]. 应用激光, 2020, 40(6): 1099-1109.

邬健, 杨振, 魏腾秀, 张政, 王威, 刘瑞雪, 王荣平. 用于光学放大的掺铒氧化铝脊型波导研究[J]. 应用激光, 2023, 43(2): 127. Wu Jian, Yang Zhen, Wei Tengxiu, Zhang Zheng, Wang Wei, Liu Ruixue, Wang Rongping. Research on Erbium-Doped Al2O3 Ridge Waveguide for Optical Amplification[J]. APPLIED LASER, 2023, 43(2): 127.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!