Ultrafast Science, 2023, 3 (1): 0042, Published Online: Dec. 4, 2023  

Probing Interface of Perovskite Oxide Using Surface-Specific Terahertz Spectroscopy

Author Affiliations
1 Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro- and Nano-Photonic Structure (MOE), Fudan University, Shanghai 200433, China.
2 Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The surface/interface species in perovskite oxides play essential roles in many novel emergent physical phenomena and chemical processes. With low eigen-energies in the terahertz region, such species at buried interfaces remain poorly understood due to the lack of feasible surface-specific spectroscopic probes to resolve the resonances. Here, we show that polarized phonons and two-dimensional electron gas at the interface can be characterized using surface-specific nonlinear optical spectroscopy in the terahertz range. This technique uses intra-pulse difference frequency mixing process, which is allowed only at the surface/interface of a centrosymmetric medium. Submonolayer sensitivity can be achieved using the state-of-the-art detection scheme for the terahertz emission from the surface/interface. Through symmetry analysis and proper polarization selection, background-free Drude-like nonlinear response from the two-dimensional electron gas emerging at the LaAlO3/SrTiO3 or Al2O3/SrTiO3 interface was successfully observed. The surface/interface potential, which is a key parameter for SrTiO3-based interface superconductivity and photocatalysis, can now be determined optically in a nonvacuum environment via quantitative analysis on the phonon spectrum that was polarized by the surface field in the interfacial region. The interfacial species with resonant frequencies in the THz region revealed by our method provide more insights into the understanding of physical properties of complex oxides.

[1] Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone JM. Interface physics in complex oxide Heterostructures. Annu Rev Condens Matter Phys. 2011;2(2):141–165.

[2] Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. Emergent phenomena at oxide interfaces. Nat Mater. 2012;11(2):103–113.

[3] Pai YY, Tylan-Tyler A, Irvin P, Levy J. Physics of SrTiO3-based heterostructures and nanostructures: A review. Rep Prog Phys. 2018;81(3):036503.

[4] Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD, Schlepuetz CM, Damodaran AR, Shafer P, Arenholz E, Dedon LR, et al. Observation of polar vortices in oxide superlattices. Nature. 2016;530(7589):198–201.

[5] Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS, Li W, Ding H, Ou YB, Deng P, Chang K, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett. 2012;29(3):037402.

[6] Zhang HM, Zhang D, Lu XW, Liu C, Zhou GY, Ma XC, Wang LL, Jiang P, Xue QK, Bao XH. Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat Commun. 2017;8:214.

[7] Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT, Li W, Yi M, Liu ZK, Hashimoto M, Zhang Y, et al. Interfacial mode coupling as the origin of the enhancement of T-c in FeSe films on SrTiO3. Nature. 2014;515(7526):245–248.

[8] Li Q, Stoica VA, Paściak M, Zhu Y, Yuan Y, Yang T, McCarter MR, Das S, Yadav AK, Park S, et al. Subterahertz collective dynamics of polar vortices. Nature. 2021;592(7854):376–380.

[9] Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature. 2020;581(7809):411–414.

[10] Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc. 1976;98(10):2774–2779.

[11] Wagner F, Somorjai G. Photocatalytic hydrogen production from water on Pt-free SrTiO 3 in alkali hydroxide solutions. Nature. 1980;285(5766):559–560.

[12] Shen YR. Fundamentals of sum-frequency spectroscopy. Cambridge (UK): Cambridge University Press; 2016.

[13] Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, Paoloni C, Gensch M, Weightman P, Williams GP,et al. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys. 2017;50(4):043001.

[14] Salén P, Basini M, Bonetti S, Hebling J, Krasilnikov M, Nikitin AY, Shamuilov G, Tibai Z, Zhaunerchyk V, Goryashko V. Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Phys Rep. 2019;836-837:1–74.

[15] Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys Chem Chem Phys. 2009;11(35):7729–7737.

[16] Tadjeddine A. Spectroscopic investigation of surfaces and interfaces by using infrared-visible sum and difference frequency generation. Surf Rev Lett. 2000;07(04):423–436.

[17] Kadlec F, Kuzel P, Coutaz JL. Optical rectification at metal surfaces. Opt Lett. 2004;29(22):2674–2676.

[18] Zhang XC, Hu BB, Darrow JT, Auston DH. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl Phys Lett. 1990;56(11):1011–1013.

[19] Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris TB, De Vaulchier LA, Dhillon S, Tignon J, et al. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett. 2014;14(10):5797–5802.

[20] Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X. Terahertz surface and interface emission spectroscopy for advanced materials. J Phys Condens Matter. 2019;31(15):153001.

[21] Perets EA, Yan EC. Chiral water superstructures around antiparallel β-sheets observed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem Lett. 2019;10(12):3395–3401.

[22] Choi WJ, Yano K, Cha M, Colombari FM, Kim J-Y, Wang Y, Lee SH, Sun K, Kruger JM, de Moura AF, et al. Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat Photonics. 2022;16:366–373.

[23] Wen YC, Zha S, Liu X, Yang SS, Guo P, Shi GS, Fang HP, Shen YR, Tian CS. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys Rev Lett. 2016;116(1):016101.

[24] Ohno PE, Saslow SA, Wang H-J, Geiger FM, Eisenthal KB. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nat Commun. 2016;7(1):13587.

[25] Ong S, Zhao X, Eisenthal KB. Polarization of water molecules at a charged interface: Second harmonic studies of the silica/water interface. Chem Phys Lett. 1992;191(3):327–335.

[26] Wang YH, Ma JY, Le JM, Su YD, Tian CS. Enhanced sensitivity of terahertz electro-optic sampling based on reflective Brewster window. In Press.

[27] Zhang S, Fu ZY, Zhu BB, Fan GY, Chen YD, Wang SJ, Liu YX, Baltuska A, Jin C, Tian CS, et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci Appl. 2021;10(1):53.

[28] Meirzadeh E, Christensen DV, Makagon E, Cohen H, Rosenhek-Goldian I, Morales EH, Bhowmik A, Lastra JMG, Rappe AM, Ehre D, et al. Surface pyroelectricity in cubic SrTiO3. Adv Mater. 2019;31(44):e1904733.

[29] Berner G, Müller A, Pfaff F, Walde J, Richter C, Mannhart J, Thiess S, Gloskovskii A, Drube W, Sing M, et al. Band alignment in LaAlO3/SrTiO3 oxide heterostructures inferred from hard x-ray photoelectron spectroscopy. Phys Rev B. 2013;88(11):115111.

[30] Chen YZ, Bovet N, Trier F, Christensen DV, Qu FM, Andersen NH, Kasama T, Zhang W, Giraud R, Dufouleur J, et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat Commun. 2013;4(1):1371.

[31] Kravtsov V, AlMutairi S, Ulbricht R, Kutayiah AR, Belyanin A, Raschke MB. Enhanced third-order optical nonlinearity driven by surface-Plasmon field gradients. Phys Rev Lett. 2018;120(20):203903.

[32] Dubroka A, Rössle M, Kim KW, Malik VK, Schultz L, Thiel S, Schneider CW, Mannhart J, Herranz G, Copie O, et al. Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 Interface. Phys Rev Lett. 2010;104(15):156807.

[33] Bickel N, Schmidt G, Heinz K, Muller K. Ferroelectric relaxation of the Srtio3(100) surface. Phys Rev Lett. 1989;62(17):2009–2011.

[34] Noguera C. Polar oxide surfaces. J Phys Condens Mat. 2000;12(31):R367–R410.

[35] Zhang Z, Yates JT. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem Rev. 2012;112(10):5520–5551.

[36] Dore P, DeMarzi G, Paolone A. Refractive indices of SrTiO3 in the infrared region. Int J Infrared Milli. 1997;18(1):125–138.

[37] Benjamin R, Emily M, Shyam P, Emma LD, Tianli L, Franz MG, Julianne MG. Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. J Am Chem Soc. 2022;144(36):16338–16349.

[38] Schütz P, Pfaff F, Scheiderer P, Chen YZ, Pryds N, Gorgoi M, Sing M, Claessen R. Band bending and alignment at the spinel/perovskite γ-Al2O3/SrTiO3 heterointerface. Phys Rev B. 2015;91(16):165118.

[39] Yu L, Zunger A. A polarity-induced defect mechanism for conductivity and magnetism at polar–nonpolar oxide interfaces. Nat Commun. 2014;5(1):5118.

Yudan Su, Jiaming Le, Junying Ma, Long Cheng, Yuxuan Wei, Xiaofang Zhai, Chuanshan Tian. Probing Interface of Perovskite Oxide Using Surface-Specific Terahertz Spectroscopy[J]. Ultrafast Science, 2023, 3(1): 0042.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。