光散射学报, 2022, 34 (3): 215, 网络出版: 2023-02-04  

束腰半径对高能电子与激光脉冲对撞辐射峰值的影响

Effect of Beam Waist Radius on Radiation Peak of High Energy Electron and Laser Pulse Collision
作者单位
1 南京邮电大学贝尔英才学院, 南京 210023
2 南京邮电大学理学院, 南京 210023
摘要
为了探究激光的束腰半径b0对高能电子与激光脉冲对撞辐射特性的影响, 以Lorentz方程以及电子辐射方程为基础建立了紧聚焦圆偏振激光与单电子对撞模型。使用MATLAB进行数值计算, 获得了笛卡尔坐标系中电子的运动轨迹, 基于模拟计算的结果深入研究了紧聚焦圆偏振激光脉冲的束腰半径与电子间的辐射功率峰值之间的关系。结果表明: 当束腰半径较小时, 峰值辐射功率随着束腰半径的增大而增加, 在b0=1.7λ0处达到最大峰值辐射功率, 接着束腰半径的增大反而会引起峰值辐射功率的缓慢降低。此外, 寻找到了一个最佳的观测θ角区间[144°, 151.5°], 在这一观测范围内能观测到较高的辐射功率, 且电子与圆偏振激光脉冲的对撞能产生超短阿秒脉冲。
Abstract
In order to explore the influence of the waist radius b0 of the laser on the radiation characteristics of the collision between high-energy electrons and laser pulses, a compactly focused circularly polarized laser and single electron collision model was established based on the Lorentz equation and the electron radiation equation. The motion trajectory of electrons in Cartesian coordinate system is obtained by numerical calculation using MATLAB. Based on the results of simulation calculation, the relationship between the waist radius of tightly focused circularly polarized laser pulse and the peak radiation power between electrons is deeply studied. The results show that when the beam waist radius is small, the peak radiation power increases with the increase of the beam waist radius, and reaches the maximum peak radiation power at b0=1.7λ0. Then, the increase of the beam waist radius will cause the slow decrease of the peak radiation power. In addition, an optimal observation θ angle range[144°, 151.5°] is found, and high radiation power can be observed in this observation range, and the collision between electrons and circularly polarized laser pulses can generate ultrashort attosecond pulses.
参考文献

[1] Wentz, J. L. Novel laser Q-switching mechanism[J]. Proceedings of the IEEE, 1964, 52(6):716-717.

[2] Agnesi A, Caracciolo E, Carrà L,et al. 150-ps pulse Raman generator pumped by a 1-kHz sub-nanosecond passively Q-switched laser system[J]. Applied Physics B, 2012, 107(3): 691-695.

[3] Ippen E P, Haus H A, Liu L Y. Additive pulse mode locking[J]. JOSA B, 1989, 6(9): 1736-1745.

[4] Hnninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. JOSA B, 1999, 16(1): 46-56.

[5] Maine P, Strickland D, Bado P,et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum electronics, 1988, 24(2): 398-403.

[6] Ross I N, Matousek P, Towrie M,et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers[J]. Optics Communications, 1997, 144(1-3): 125-133.

[7] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of modern physics, 1996, 78(2): 309-371.

[8] 田友伟,李升华,董健堂.周期量级强激光场中电子振荡所导致的辐射的空间分布特性[J].光散射学报,2010,22(02):120-123.( Tian Y W, Li S H, Dong J T. Relativistic Motion and Spatial Characteristics of Radiation from an Electron in the Field of an Intense Few-cycle Laser Pulse[J]. Light Scattering, 2010,22(02):120-123.)

[9] Li K, Li L, Shu Q,et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817.

[10] Chen Z, Qin H, Chen X,et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding with electrons[J]. Laser Physics, 2021, 31(7): 075401.

[11] Wang Y, Wang C, Zhou Q,et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations[J]. Laser Physics, 2020, 31(1): 015301.

[12] 郑君,盛政明,张杰,魏志义,余玮.影响单电子非线性汤姆孙散射因素的研究[J].物理学报,2005.54(3):1018-1035.(Zheng J, Sheng Z M, Zhang J, et al. Parameters that influence the nonlinear Thomson scattering of single electrons in high-intensity laser fields[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035.)

[13] Wang Y, Wang C, Li K,et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2020, 18(1): 015303.

[14] Wang Y, Zhou Q, Zhuang J,et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses[J]. Optics Express, 2021, 29(14): 22636-22647.

[15] Salamin Y I, Faisal F H M. Harmonic generation by superintense light scattering from relativistic electrons[J]. Physical Review A, 1996, 54(5): 4383.

[16] Yu P, Lin H, Gu Z,et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses[J]. Laser Physics, 2020, 30(4): 045301.

[17] Wu Y, Liu Y, Liu D,et al. Effect of circularly polarized laser pulse beam waist radius on the dynamic and radiation characteristics of collided electrons[J]. Laser Physics, 2020, 30(11): 115301.

[18] Tian Y W, Yu W, Lu P X,et al. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum[J]. Acta Physica Sinica, 2005, 54(9): 4208-4212.

[19] Tian Y, Lu Y. Ultrashort X-ray pulses emitted from laser-field synchrotron radiation[J]. High Power Laser and Particle Beams, 2008, 20(10): 1737-1740.

[20] Liu F, Willi O. Ultrashort X-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15(7): 070702.

孔春明, 靳亚盛, 黄茗涵, 田友伟. 束腰半径对高能电子与激光脉冲对撞辐射峰值的影响[J]. 光散射学报, 2022, 34(3): 215. KONG Chunming, JIN Yasheng, HUANG Minghan, TIAN Youwei. Effect of Beam Waist Radius on Radiation Peak of High Energy Electron and Laser Pulse Collision[J]. The Journal of Light Scattering, 2022, 34(3): 215.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!