量子电子学报, 2023, 40 (2): 193, 网络出版: 2023-04-15  

太赫兹近场显微技术研究进展

Research progress of terahertz near-field microscopy
作者单位
北京航空航天大学电子信息工程学院, 北京 100191
摘要
太赫兹是电磁频谱上还未被完全开发利用的频段, 但太赫兹谱学成像技术在材料科学和器件测试等方面已展现出重要应用价值。然而受远场衍射极限限制, 该频段难以聚焦于纳米、原子尺度的新材料和微纳器件中, 极大阻碍了太赫兹科学的发展与技术应用。为提高成像分辨率, 使其成为材料科学等交叉领域强大的研究工具, 近年诞生了太赫兹耦合的近场显微技术, 实现了纳米到埃米量级的空间分辨。本文综述了太赫兹耦合的近场显微技术, 包括扫描近场显微镜和扫描隧道显微镜各自的发展历程和应用实例, 并探讨了太赫兹近场显微技术的未来机遇和挑战。
Abstract
Terahertz(THz) wave is an electromagnetic frequency band that has not been fully developed and utilized, but has shown important application value in material science and device testing. However, due to the limit of far-field diffraction, it is difficult for THz wave to be focused into new materials and nano-devices with nanometer or even atomic scale, which greatly hinders the development of THz science and its applications. Recently, to improve the spatial resolution of THz spectroscopy and imaging, near-field microscopy coupled with THz has been developed, which can achieve nanometer to angstrom spatial resolution. This paper summarizes the principle, development process and application examples of THz coupled near-field microscopy, including scanning near-field microscopy and scanning tunneling microscopy, and discusses the future opportunities and challenges in THz near-field microscopy.
参考文献

[1] Gu J Q, Wang K M, Xu Y, et al. Metamaterials-based terahertz photoconductive antennas [J]. Chinese Journal of Lasers, 2021, 48(19): 174-194.

[2] Fülp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources [J]. Advanced Optical Materials, 2019, 8: 1900681.

[3] Lee Y S. Principles of Terahertz Science and Technology [M]. New York: Springer, 2009.

[4] Huber R, Tauser F, Brodschelm A, et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma [J]. Nature, 2001, 414(6861): 286-289.

[5] Cocker T L, Jelic V, Hillenbrand R, et al. Nanoscale terahertz scanning probe microscopy [J]. Nature Photonics, 2021, 15(8): 558-569.

[6] Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy [J]. Nature, 1999, 399(13): 134-137.

[7] van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip [J]. Applied Physics Letters, 2002, 81(9): 1558-1560.

[8] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution [J]. Applied Physics Letters, 2003, 83(15): 3009-3011.

[9] Buersgens F, Kersting R, Chen H T. Terahertz microscopy of charge carriers in semiconductors [J]. Applied Physics Letters, 2006, 88(11): 112115.

[10] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices [J]. Nano Letters, 2008, 8(11): 3766-3770.

[11] Qazilbash M M, Brehm M, Chae B G, et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging [J]. Science, 2007, 318(5857): 1750-1753.

[12] Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy [J]. ACS Photonics, 2017, 4(11): 2676-2680.

[13] Weng Q C, Komiyama S, Yang L, et al. Imaging of nonlocal hot-electron energy dissipation via shot noise [J]. Science, 2018, 360(6390): 775-778.

[14] Komiyama S. Perspective: Nanoscopy of charge kinetics via terahertz fluctuation [J]. Journal of Applied Physics, 2019, 125(1): 010901.

[15] Cocker T L, Eisele M, Huber M A, et al. Ultrafast field-resolved multi-THz spectroscopy on the sub-nanoparticle scale [C]. Proceedings of SPIE, 2015, 9585: 1-7.

[16] Eisele M, Cocker T L, Huber M A, et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution [J]. Nature Photonics, 2014, 8(11): 841-845.

[17] Basov D N, Fogler M M, Garcia De Abajo F J. Polaritons in van der Waals materials [J]. Science, 2016, 354(6309): 195-204.

[18] Fei Z, Andreev G O, Bao W Z, et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface [J]. Nano Letters, 2011, 11(11): 4701-4705.

[19] Chen J N, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons [J]. Nature, 2012, 487(7405): 77-81.

[20] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging [J]. Nature, 2012, 487(7405): 82-85.

[21] Ni G X, Wang L, Goldflam M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene [J]. Nature Photonics, 2016, 10(4): 244-247.

[22] de Oliveira T V A G, Nrenberg T, lvarez-Pérez G, et al. Nanoscale-confined terahertz polaritons in a van der waals crystal [J]. Advanced Materials, 2021, 33(2): e2005777.

[23] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus [J]. Nature Communications, 2014, 5: 4475.

[24] Yuan H T, Liu X G, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction [J]. Nature Nanotechnology, 2015, 10(8): 707-713.

[25] Huber M A, Mooshammer F, Plankl M, et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures [J]. Nature Nanotechnology, 2017, 12(3): 207-211.

[26] Plankl M, Faria Junior P E, Mooshammer F, et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures [J]. Nature Photonics, 2021, 15(8): 594-600.

[27] Siday T, Sandner F, Brem S, et al. Ultrafast nanoscopy of high-density exciton phases in WSe2 [J]. Nano Letters, 2022, 22(6): 2561-2568.

[28] Tachizaki T, Hayashi K, Kanemitsu Y, et al. On the progress of ultrafast time-resolved THz scanning tunneling microscopy [J]. Applied Physics Letters Materials, 2021, 9(6): 060903.

[29] Gutzler R, Garg M, Ast C R, et al. Light-matter interaction at atomic scales [J]. Nature Reviews Physics, 2021, 3(6): 441-453.

[30] Cocker T L, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope [J]. Nature Photonics, 2013, 7(8): 620-625.

[31] Jelic V, Iwaszczuk K, Nguyen P H, et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface [J]. Nature Physics, 2017, 13(6): 591-598.

[32] Peller D, Roelcke C, Kastner L Z. Quantitative sampling of atomic-scale electromagnetic waveforms [J]. Nature Photonics, 2020, 15(2): 143-147.

[33] Ammerman S E, Jelic V, Wei Y, et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons [J]. Nature Communications, 2021, 12(1): 6794.

[34] Müller M, Sabanés N M, Kampfrath T, et al. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction [J]. ACS Photonics, 2020, 7(8): 2046-2055.

[35] Abdo M, Sheng S X, Rolf-Pissarczyk S, et al. Variable repetition rate THz source for ultrafast scanning tunneling microscopy [J]. ACS Photonics, 2021, 8(3): 702-708.

[36] Cocker T L, Peller D, Yu P, et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging [J]. Nature, 2016, 539(7628): 263-267.

[37] Peplow M. The next big hit in molecule Hollywood [J]. Nature, 2017, 544(7651): 408-410.

[38] Peller D, Kastner L Z, Buchner T, et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch [J]. Nature, 2020, 585(7823): 58-62.

[39] Yang B, Chen G, Ghafoor A, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging [J]. Nature Photonics, 2020, 14(11): 693-699.

[40] Lloyd-Hughes J, Oppeneer P M, Pereira Dos Santos T, et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap [J]. Journal of Physics: Condensed Matter, 2021, 33: 353001.

[41] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.

[42] Tapasztó L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397-401.

[43] Cai J M, Ruffieux P, Jaafar R. Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature, 2010, 466(7305): 470-473.

[44] Talirz L, Ruffieux P, Fasel R. On-surface synthesis of atomically precise graphene nanoribbons [J]. Advanced Materials, 2016, 28(29): 6222-6231.

[45] Yoshioka K, Katayama I, Minami Y, et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields [J]. Nature Photonics, 2016, 10(12): 762-765.

[46] Yoshida S, Hirori H, Tachizaki T, et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field [J]. ACS Photonics, 2019, 6(6): 1356-1364.

[47] Yoshida S, Arashida Y, Hirori H, et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations [J]. ACS Photonics, 2021, 8(1): 315-323.

[48] Kimura K, Morinaga Y, Imada H, et al. Terahertz-field-driven scanning tunneling luminescence spectroscopy [J]. ACS Photonics, 2021, 8(4): 982-987.

[49] Wang L K, Xia Y P, Ho W. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity [J]. Science, 2022, 376(6591): 401-405.

[50] Sheng S X, Oeter A C, Abdo M, et al. Launching coherent acoustic phonon wave packets with local femtosecond coulomb forces [J]. Physical Review Letters, 2022, 129(4): 043001.

[51] Kwok Y, Chen G H, Mukamel S. STM imaging of electron migration in real space and time: A simulation study [J]. Nano Letters, 2019, 19(10): 7006-7012.

[52] Luo Y, Jelic V, Chen G, et al. Nanoscale terahertz STM imaging of a metal surface [J]. Physical Review B, 2020, 102: 205417.

[53] Shi T, Cirac J I, Demler E. Ultrafast molecular dynamics in terahertz-STM experiments: Theoretical analysis using the Anderson-Holstein model [J]. Physical Review Research, 2020, 2(033379): 1-20.

[54] Frankerl M, Donarini A. Spin-orbit interaction induces charge beatings in a lightwave-STM-single molecule junction [J]. Physical Review B, 2021, 103(8): 085420.

[55] Ammerman S E, Wei Y, Everett N, et al. Algorithm for subcycle terahertz scanning tunneling spectroscopy [J]. Physical Review B, 2022, 105: 115427.

[56] Lang D, Balaghi L, Winnerl S, et al. Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy [J]. Nanotechnology, 2019, 30(8): 084003.

[57] Kravtsov V, Ulbricht R, Atkin J M, et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging [J]. Nature Nanotechnology, 2016, 11(5): 459-464.

[58] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients [J]. Nature Photonics, 2013, 7(9): 680-690.

[59] Schumachera Z, Rejalia R, Pachlatkoa R, et al. Nanoscale force sensing of an ultrafast nonlinear optical response[J]. Proceeding of the National Academy of Science of the United States of America, 2020, 10: 1073.

代明聪, 才家华, 熊虹婷, 陈赛, 吴晓君. 太赫兹近场显微技术研究进展[J]. 量子电子学报, 2023, 40(2): 193. DAI Mingcong, CAI Jiahua, XIONG Hongting, CHEN Sai, WU Xiaojun. Research progress of terahertz near-field microscopy[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 193.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!