压电与声光, 2023, 45 (1): 51, 网络出版: 2023-04-07  

基于流激振荡现象的流体动能收集技术研究

Research on Fluid Kinetic Energy Harvesting Technology Based on Flow-Induced Oscillation
作者单位
中国计量大学 浙江省流量计量技术重点实验室, 浙江 杭州 310018
摘要
针对偏远地区及特殊场景下的低功耗无线传感节点电源维护不易的问题, 该文对一种基于流激振荡现象的流体动能收集技术进行了研究, 结合压电技术可实现流体动能转换至电能的过程。通过对流激振荡现象进行数值模拟及实验研究, 分析了空腔结构中的流场及声场分布特性, 探究了流体速度对声振荡频率及幅值的影响规律。利用COMSOL软件对声电转换过程进行仿真, 实现了完整的流体动能-电能的转换过程。研究结果表明, 在一定的速度条件下存在频率稳定的声振荡区间, 可驱动压电换能装置输出频率稳定的电压, 当气体流速为30.5 m/s时(相当于高压输气管道的流速范围), 声场压力振幅可达6.12 kPa, 对应的输出开路电压为2.62 V。当外接15 kΩ电阻时, 最高输出功率可达0.29 mW。
Abstract
In order to address the problem that it is difficult to maintain the power supply of low-power wireless sensor nodes in remote areas and special scenarios, this work investigates a fluid kinetic energy harvesting technology based on flow-induced oscillation phenomenon, which can realize the conversion process from fluid kinetic energy to electric energy by combining with piezoelectric technology. Through numerical simulation and experimental research on the phenomenon of flow-induced oscillation, the flow field and sound field distribution characteristics in the cavity structure are analyzed, and the influence of fluid velocity on the frequency and amplitude of acoustic oscillation is explored. The acoustic-electric conversion process is simulated by COMSOL software, and the complete conversion process of fluid kinetic energy to electric energy is realized. The research results show that there exists an acoustic oscillation range with stable frequency under certain speed conditions, which can drive the piezoelectric transducer to output a voltage with stable frequency. When the gas flow rate is 30.5 m/s (equivalent to the flow rate range of high-pressure gas transmission pipeline), the amplitude of the sound field pressure can reach 6.12 kPa, corresponding to an output open circuit voltage of 2.62 V. When an external 15 kΩ resistor is connected, the maximum output power is up to 0.29 mW.
参考文献

[1] REHAN W,FISCHER S,REHAN M,et al.A comprehensive survey on multichannel routing in wireless sensor networks[J].Journal of Network and Computer Applications,2017,95:1-25.

[2] 张丹,郑述,窦亚萍,等.基于涡激振动-颤振的压电俘能系统设计[J].压电与声光,2022,44(1):73-76.

[3] 于慧慧,李莉,王永耀,等.基于涡致振动的压电能量收集阵列的仿真与实验[J].压电与声光,2022,44(1):77-84.

[4] 于冉冉,刘联胜,葛明慧,等.太阳能温差发电系统的性能[J].浙江大学学报(工学版),2018,52(4):769-775.

[5] 张庆新,吕俊伯,杨静,等.一种悬臂梁式MSMA振动能量采集器研究[J].压电与声光,2020,42(2):213-217.

[6] 贺学锋,齐睿,程耀庆,等.风致振动能量采集器驱动的无线风速传感器[J].振动工程学报,2017,30(2):290-296.

[7] SHAN X,TIAN H,CHEN D,et al.A curved panel energy harvester for aeroelastic vibration[J].Applied Energy,2019,249(SEP.1):58-66.

[8] EWERE F,WANG G,FRENDI A.Experimental investigation of a bioinspired bluff-body effect on galloping piezoelectric energy-harvester performance[J].Aiaa Journal,2018,56(3):1284-1287.

[9] ZHENG P,QI L,SUN M,et al.A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels[J].Energy,2021,227(3):120446.

[10] 黄超,张锴,肖瑶,等.大管径主管上旁支管流致声共振实验研究[J].核动力工程,2020,41(4):79-84.

钱成, 徐雅, 谢代梁, 刘铁军, 黄震威. 基于流激振荡现象的流体动能收集技术研究[J]. 压电与声光, 2023, 45(1): 51. QIAN Cheng, XU Ya, XIE Dailiang, LIU Tiejun, HUANG Zhengwei. Research on Fluid Kinetic Energy Harvesting Technology Based on Flow-Induced Oscillation[J]. Piezoelectrics & Acoustooptics, 2023, 45(1): 51.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!