Photonics Research, 2023, 11 (5): 887, Published Online: May. 4, 2023  

Structured illumination-based super-resolution live-cell quantitative FRET imaging

Zewei Luo 1,2†Ge Wu 1,2†Mengting Kong 1,2Zhi Chen 1,2Zhengfei Zhuang 1,2,3Junchao Fan 4,5,*Tongsheng Chen 1,2,3,6,*
Author Affiliations
1 Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
2 Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
3 SCNU Qingyuan Institute of Science and Technology Innovation, South China Normal University, Qingyuan 511520, China
4 Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
5 e-mail:
6 e-mail:
Copy Citation Text

Zewei Luo, Ge Wu, Mengting Kong, Zhi Chen, Zhengfei Zhuang, Junchao Fan, Tongsheng Chen. Structured illumination-based super-resolution live-cell quantitative FRET imaging[J]. Photonics Research, 2023, 11(5): 887.


[1] Z. Liu, L. D. Lavis, E. Betzig. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell, 2015, 58: 644-659.

[2] E. Lerner, T. Cordes, A. Ingargiola, Y. Alhadid, S. Y. Chung, X. Michalet, S. Weiss. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science, 2018, 359: eaan1133.

[3] L. A. Masullo, A. M. Szalai, L. F. Lopez, F. D. Stefani. Fluorescence nanoscopy at the sub-10 nm scale. Biophys. Rev., 2021, 13: 1101-1112.

[4] M. Ben-Johny, D. N. Yue, D. T. Yue. Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nat. Commun., 2016, 7: 13709.

[5] M. Du, F. Yang, Z. Mai, W. Qu, F. Lin, L. Wei, T. Chen. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor. Appl. Phys. Lett., 2018, 112: 153702.

[6] F. Yang, W. Qu, M. Du, Z. Mai, B. Wang, Y. Ma, X. Wang, T. Chen. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell. Mol. Life Sci., 2020, 77: 2387-2406.

[7] T. Zal, N. R. J. Gascoigne. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J., 2004, 86: 3923-3939.

[8] A. D. Hoppe, S. L. Shorte, J. A. Swanson, R. Heintzmann. Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys. J., 2008, 95: 400-418.

[9] Á. Szabó, T. Szendi-Szatmári, J. Szöllősi, P. Nagy. Quo vadis FRET? Förster’s method in the era of superresolution. Methods Appl. Fluoresc., 2020, 8: 032003.

[10] A. M. Szalai, C. Zaza, F. D. Stefani. Super-resolution FRET measurements. Nanoscale, 2021, 13: 18421-18433.

[11] E. A. Jares-Erijman, T. M. Jovin. FRET imaging. Nat. Biotechnol., 2003, 21: 1387-1395.

[12] H. E. Grecco, P. J. Verveer. FRET in cell biology: still shining in the age of super-resolution?. ChemPhysChem, 2011, 12: 484-490.

[13] N. S. Deußner-Helfmann, A. Auer, M. T. Strauss, S. Malkusch, M. S. Dietz, H. D. Barth, R. Jungmann, M. Heilemann. Correlative single-molecule FRET and DNA-PAINT imaging. Nano Lett., 2018, 18: 4626-4630.

[14] C. Tardif, G. Nadeau, S. Labrecque, D. Côté, F. Lavoie-Cardinal. Fluorescence lifetime imaging nanoscopy for measuring Förster resonance energy transfer in cellular nanodomains. Neurophotonics, 2019, 6: 015002.

[15] A. M. Szalai, B. Siarry, J. Lukin, S. Giusti, N. Unsain, A. Cáceres, F. Steiner, P. Tinnefeld, D. Refojo, T. M. Jovin, F. D. Stefani. Super-resolution imaging of energy transfer by intensity-based STED-FRET. Nano Lett., 2021, 21: 2296-2303.

[16] D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, E. Betzig. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 2015, 349: aab3500.

[17] Y. Guo, D. Li, S. Zhang, Y. Yang, J.-J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 2018, 175: 1430-1442.

[18] T. Zhao, H. Hao, Z. Wang, Y. Liang, K. Feng, M. He, X. Yun, P. R. Bianco, Y. Sun, B. Yao, M. Lei. Multi-color structured illumination microscopy for live cell imaging based on the enhanced image recombination transform algorithm. Biomed. Opt. Express, 2021, 12: 3474-3484.

[19] Z. Wang, T. Zhao, H. Hao, Y. Cai, K. Feng, X. Yun, Y. Liang, S. Wang, Y. Sun, P. R. Bianco, K. Oh, M. Lei. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy. Adv. Photon., 2022, 4: 026003.

[20] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 2018, 36: 451-459.

[21] W. Zhao, S. Zhao, L. Li, X. Huang, S. Xing, Y. Zhang, G. Qiu, Z. Han, Y. Shang, D. en Sun, C. Shan, R. Wu, L. Gu, S. Zhang, R. Chen, J. Xiao, Y. Mo, J. Wang, W. Ji, X. Chen, B. Ding, Y. Liu, H. Mao, B. L. Song, J. Tan, J. Liu, H. Li, L. Chen. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 2022, 40: 606-617.

[22] Z. Liu, Z. Luo, H. Chen, A. Yin, H. Sun, Z. Zhuang, T. Chen. Optical section structured illumination-based Förster resonance energy transfer imaging. Cytometry A, 2022, 101: 264-272.

[23] F. Görlitz, D. S. Corcoran, E. A. G. Castano, B. Leitinger, M. A. A. Neil, C. Dunsby, P. M. W. French. Mapping molecular function to biological nanostructure: combining structured illumination microscopy with fluorescence lifetime imaging (SIM + FLIM). Photonics, 2017, 4: 40.

[24] G. Wen, S. Li, L. Wang, X. Chen, Z. Sun, Y. Liang, X. Jin, Y. Xing, Y. Jiu, Y. Tang, H. Li. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 2021, 10: 70.

[25] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 1999, 3568: 185-196.

[26] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 2000, 198: 82-87.

[27] M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 2008, 94: 4957-4970.

[28] M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, T. Huser. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 2016, 7: 10980.

[29] J. Zhang, L. Zhang, L. Chai, F. Yang, M. Du, T. Chen. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Micron, 2016, 88: 7-15.

[30] H. Chen, H. L. Puhl, S. V. Koushik, S. S. Vogel, S. R. Ikeda. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J., 2006, 91: L39-L41.

[31] D. Bradley, G. Roth. Adaptive thresholding using the integral image. J. Graph. Tools, 2007, 12: 13-21.

[32] A. Descloux, K. S. Grußmayer, A. Radenovic. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods, 2019, 16: 918-924.

[33] T. Kleele, T. Rey, J. Winter, S. Zaganelli, D. Mahecic, H. Perreten Lambert, F. P. Ruberto, M. Nemir, T. Wai, T. Pedrazzini, S. Manley. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 2021, 593: 435-439.

[34] A. Esposito. How many photons are needed for FRET imaging?. Biomed. Opt. Express, 2020, 11: 1186-1202.

Zewei Luo, Ge Wu, Mengting Kong, Zhi Chen, Zhengfei Zhuang, Junchao Fan, Tongsheng Chen. Structured illumination-based super-resolution live-cell quantitative FRET imaging[J]. Photonics Research, 2023, 11(5): 887.

引用该论文: TXT   |   EndNote



关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。