光学学报, 2023, 43 (22): 2200001, 网络出版: 2023-11-20  

计算光学成像在惯性约束聚变中的应用及技术进展

Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion
作者单位
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室,上海 201800
2 中国科学院中国工程物理研究院高功率激光物理联合实验室,上海 201800
3 装备发展部某中心,北京 100034
图 & 表

图 1. 光束质量对高功率激光驱动器输出性能的影响

Fig. 1. Influence of beam quality on output performance of high power laser driver

下载图片 查看原文

图 2. 光束质量对高功率激光驱动器能量输出的影响

Fig. 2. Influence of beam quality on energy output of high power laser driver

下载图片 查看原文

图 3. 光场的数学表达及测量意义

Fig. 3. Mathematical expression and measurement significance of light field

下载图片 查看原文

图 4. SG-Ⅱ装置中需要测量的光学参量

Fig. 4. Optical parameters to be measured in SG-Ⅱ

下载图片 查看原文

图 5. NIF波前测控装置示意图12

Fig. 5. Schematic of NIF wavefront measurement and control device[12]

下载图片 查看原文

图 6. ePIE算法光路原理图

Fig. 6. Schematic of lightpath for ePIE algorithm

下载图片 查看原文

图 7. 3PIE算法光路原理图

Fig. 7. Schematic of lightpath for 3PIE algorithm

下载图片 查看原文

图 8. 大角度倾斜照明成像原理和实验结果32。(a)大角度倾斜照明成像原理图;基于非傍轴近似算法重建的南瓜茎切片的(b)振幅和(c)相位,以及(f)分辨率板的振幅;基于傍轴近似算法重建的南瓜茎切片的(d)振幅和(e)相位,以及(g)分辨率板的振幅

Fig. 8. Principle and experimental results of highly tilted illumination imaging[32]. (a) Schematic of highly tilted illumination imaging; (b) amplitude and (c) phase of pumpkin stem slice and (f) amplitude of resolution plate reconstructed by non-paraxial approximation algorithm; (d) amplitude and (e) phase of pumpkin stem slice and (g) amplitude of resolution plate reconstructed by paraxial approximation algorithm

下载图片 查看原文

图 9. 单次曝光3PIE成像原理和实验结果34-35。(a)非傍轴近似单次曝光3PIE成像装置图;(b)CCD记录的衍射斑阵列;非傍轴近似算法重建第一层样品的(c)振幅和(d)相位;非傍轴近似算法重建第二层样品的(e)振幅和(f)相位;(g)(h)非傍轴近似算法重建两层相位型分辨率板的相位分布;(i)傍轴近似算法单次曝光3PIE成像装置图;(j)傍轴近似算法重建的两层样品

Fig. 9. Principle and experimental results of single-shot 3PIE[34-35]. (a) Imaging device of non-paraxial approximate single-shot 3PIE[34];(b) diffraction spot array recorded by CCD; (c) amplitude and (d) phase of the first layer sample reconstructed by non-paraxial approximation algorithm; (e) amplitude and (f) phase of the second layer sample reconstructed by non-paraxial approximation algorithm; (g) (h) phase distribution of two layers phase resolution plate reconstructed by non-paraxial approximation algorithm; (i) imaging device of paraxial approximate single-shot 3PIE[35]; (j) two-layer sample reconstructed by paraxial approximation algorithm

下载图片 查看原文

图 10. CMI技术原理图

Fig. 10. Schematic of CMI

下载图片 查看原文

图 11. 多台阶编码板示意图37。(a)三维和(b)二维刻蚀高度示意图

Fig. 11. Schematic of multi-step phase plate[37]. (a) 3D and (b) 2D view of etched depth

下载图片 查看原文

图 12. 多模态CMI技术流程图37

Fig. 12. Flow chart of multimodal CMI[37]

下载图片 查看原文

图 13. 三波长照明实验重建结果37。(A)CCD记录的衍射斑;重建的3种波长照明光的(a1)~(c1)振幅和(a2)~(c2)相位

Fig. 13. Experimental reconstruction results of three-wavelength illumination[37]. (A) Diffraction patterns recorded by CCD; reconstructed (a1)-(c1) amplitude and (a2)-(c2) phase of illumination beam at three wavelengths

下载图片 查看原文

图 14. CBS成像技术原理图41

Fig. 14. Schematic of CBS imaging technology[41]

下载图片 查看原文

图 15. 分束编码平均相干衍射成像迭代过程原理图43,其中f1f2f3f4表示4个子光束的焦点,dm表示平移矢量,右上侧插图是记录的衍射斑

Fig. 15. Schematic of iterative process for BSEA coherent diffraction imaging[43], f1, f2, f3, and f4 represent the focal points of four sub-beams, dm represents the translation vector, and the top right illustration is the recorded diffraction spot

下载图片 查看原文

图 16. BSEA实验光路图43

Fig. 16. Schematic of lightpath in the BSEA experiment[43]

下载图片 查看原文

图 17. BSEA技术与传统CMI技术重建能力对比43。传统CMI技术记录的(a)衍射斑、(d)重建的分辨率板,以及(g)对应的实验分辨率;(b)CBS成像技术记录的衍射斑阵列;在不使用平均算法情况下重建的(e)分辨率板,以及(h)对应的实验分辨率;在使用平均算法情况下(c)平均面上的强度分布,以及(f)重建的分辨率板和(i)对应的实验分辨率

Fig. 17. Reconstruction capability comparison between BSEA and traditional CMI[43]. (a) Diffraction patterns, (d) reconstructed resolution plate, and (g) corresponding experimental resolution recorded by traditional CMI; (b) diffraction pattern array recorded by the CBS imaging technique; (e) resolution plate reconstructed without using the average algorithm and (h) corresponding experimental resolution; using the averaging algorithm, (c) intensity distribution on the average plane, (f) reconstructed resolution plate, and (i) corresponding experimental resolution

下载图片 查看原文

图 18. CDI技术在大口径光学元件相位测量上的应用2350。(a)测量方法原理图;(b)CPP实物图;(c)Zygo干涉仪测量的相位分布;(d)CPP相位设计图;(e)ePIE方法测量的CPP相位分布;(f)阵列透镜实物图;(g)ePIE方法测量的阵列透镜相位分布;(h)单个子透镜的相位分布;(i)单个子透镜焦点处的强度分布

Fig. 18. Application of CDI in phase measurement of large aperture optical elements[23, 50]. (a) Schematic of measurement methods; (b) physical picture of CPP; (c) phase distribution measured by Zygo interferometer; (d) CPP phase distribution design diagram; (e) CPP phase distribution measured by ePIE; (f) physical image of array lens; (g) phase distribution of array lens measured by ePIE; (h) phase distribution of a single sublens; (i) intensity distribution of a single sublens at the focal spot

下载图片 查看原文

图 19. 测量校装应力对光学元件面形影响的原理图,以及预紧力对反射镜面形分布的影响39。(a)装置原理图;无施加预紧力时聚焦透镜透射光的(b)振幅和(c)相位;施加预紧力时聚焦透镜透射光的(d)振幅和(e)相位

Fig. 19. Schematic for measuring the effect of alignment stress on the surface profile of optical element, and the effect of preload on the profile distribution of mirror[39].(a) Device schematic; (b) amplitude and (c) phase of the transmitted light on the focusing lens surface without applying preload; (d) amplitude and (e) phase of the transmitted light on the focusing lens surface when preload is applied

下载图片 查看原文

图 20. CMI方法测量得到的不同预紧力下反射镜的面形39。(a)~(i)预紧力从0增加到1 MPa的过程中,反射镜面形的变化情况

Fig. 20. Surface profile of mirror under different preload forces measured by CMI method[39]. (a)-(i) Change in the surface profile of mirror as the preload increases from 0 to 1 MPa

下载图片 查看原文

图 21. 相移PIE全场应力测量技术原理图54

Fig. 21. Schematic of PIE full-field stress measurement technique[54]

下载图片 查看原文

图 22. 4种偏振状态下的光斑图54。(a)~(d)衍射光斑;PIE技术重建的(e)~(h)振幅和(i)~(l)相位

Fig. 22. Images of beam pattern under four polarization states[54]. (a)-(d) Recorded diffraction patterns; (e)-(h) amplitude and (i)-(l) phase reconstructed by PIE technique

下载图片 查看原文

图 23. 实验获得的应力分布54。(a)等倾线φ;(b)等差线δd;(c)等和线δs;(d)横向力σx;(e)纵向力σy;(f)剪切力σxy

Fig. 23. Experimental stress distribution[54]. (a) Isocline φ; (b) isometric δd; (c) isosum δs; (d) transverse force σx; (e) longitudinal force σy; (f) shear force σxy

下载图片 查看原文

图 24. 哈德曼传感器记录的焦斑38。(a)没有泵浦光时记录的焦斑;(b)有泵浦光时记录的焦斑

Fig. 24. Focal spots recorded by Hardman sensor[38]. (a) Focal spot recorded without pumping; (b) focal spot recorded with pumping

下载图片 查看原文

图 25. 基于CDI的波前热畸变测量4957。(a)测量光路原理图;(b)~(d)放大器工作在重复频率为1、5、7 Hz时的相位差;(e)~(g)对应的解包裹后的相位分布

Fig. 25. Measurement of wavefront thermal distortion based on CDI[49, 57]. (a) Schematic of measuring lightpath; (b)-(d) phase difference when the amplifier works at repetition frequency of 1, 5, and 7 Hz; (e)-(g) phase distribution after unwrapping

下载图片 查看原文

图 26. 菲涅耳相位反演法测量的高功率激光波前分布21。(a)算法流程图;(b)~(d)不同能量下光束的强度分布以及重建的相位分布,其中(b)泵浦能量为450 mJ、输出能量为42 mJ,(c)泵浦能量为450 mJ、输出能量为2 mJ,(d)泵浦能量为210 mJ、输出能量为2 mJ

Fig. 26. Wavefront distribution of high-power laser measured by Fresnel phase inversion method[21]. (a) Algorithm flow chart; (b)-(d) beam intensity distribution and reconstructed phase distribution under different energies, wherein (b) pump energy is 450 mJ and output energy is 42 mJ,(c) pump energy is 450 mJ and output energy is 2 mJ, (d) pump energy is 210 mJ and output energy is 2 mJ

下载图片 查看原文

图 27. 基于误差减小算法的相位反演流程图和实验光路59。(a)流程图;(b)实验光路

Fig. 27. Phase inversion flow chart and experimental lightpath based on error reduction algorithm[59]. (a) Flow chart; (b) experimental lightpath

下载图片 查看原文

图 28. 波前像差测量结果59。(a)波前传感器测量的波前像差;(b)相位反演算法重建的波前像差;(c)两种方法获得的波前像差比较

Fig. 28. Measurement results of wavefront aberration[59]. (a) Wavefront aberration measured by wavefront sensor; (b) wavefront aberration reconstructed by phase inversion algorithm; (c) comparison of wavefront aberration obtained by two methods

下载图片 查看原文

图 29. OMEGA EP焦斑诊断装置和重建算法示意图22。(a)OMEGA EP终端系统焦斑诊断装置示意图,其中WFS是波前传感器;(b)用于波前诊断的相位重建算法流程

Fig. 29. Schematic of OMEGA EP focal spot diagnosis device and reconstruction algorithm[22]. (a) Schematic of OMEGA EP terminal system focal spot diagnosis device, and WFS stands for wavefront sensor; (b) flow chart of phase reconstruction algorithm for wavefront diagnosis

下载图片 查看原文

图 30. 一个改进样本光束焦点预测的实验结果22。(a)远场CCD直接记录的焦斑;(b)FSD初始预测值(相关性为0.71);(c)改进后FSD预测值(相关性为0.95)

Fig. 30. Experimental results of an improved sample beam focus prediction[22]. (a) Focal spot directly recorded by far-field CCD; (b) initial FSD predicted value (cross-correlation is 0.71); (c) improved FSD predicted value (cross-correlation is 0.95)

下载图片 查看原文

图 31. 波前测量系统原理图40。波前测量系统在SG-Ⅱ装置中的(a)位置和(b)结构示意图;(c)相位板的相位分布;(d)波前测量系统与直接测量焦斑分布装置的位置关系

Fig. 31. Schematic of wavefront measuring system[40]. (a) Position and (b) structure diagram of wavefront measuring system in the SG-Ⅱ; (c) phase distribution of phase plate; (d) position relationship of wavefront measuring system and direct measurement device of focal spot distribution

下载图片 查看原文

图 32. 焦斑强度分布图40。(a)几何光学系统获得的焦斑分布;(b)波前测量系统获得的焦斑分布;(c)对图32(b)进行数字饱和处理的结果

Fig. 32. Focal spot intensity distribution[40]. (a) Focal spot distribution obtained by geometric optics system; (b) focal spot distribution obtained by wavefront measurement system; (c) the result of digital saturation of Fig. 32(b)

下载图片 查看原文

图 33. 激光输出能量为600 J时,不同距离上的焦斑分布40。(a)到最小焦斑平面的距离为-1.9 mm;(b)到最小焦斑平面的距离为-1.14 mm;(c)到最小焦斑平面的距离为-0.38 mm;(d)到最小焦斑平面的距离为0.38 mm;(e)到最小焦斑平面的距离为1.14 mm;(f)到最小焦斑平面的距离为1.9 mm

Fig. 33. Focal spot distribution at different distances when the laser output energy is 600 J[40]. (a) Distance to the minimum focal spot plane is -1.9 mm; (b) distance to the minimum focal spot plane is -1.14 mm; (c) distance to the minimum focal spot plane is -0.38 mm; (d) distance to the minimum focal spot plane is 0.38 mm; (e) distance to the minimum focal spot plane is 1.14 mm; (f) distance to the minimum focal spot plane is 1.9 mm

下载图片 查看原文

图 34. 空调系统打开的情况下,连续6个时刻采集的衍射斑,每幅图像的采集间隔为1 s,重建6个时刻的复振幅分布,并比较6个时刻的相位分布61

Fig. 34. Diffraction spots at six continuous moments when the air conditioning system was turned on, with an interval of 1 s, the complex amplitude distribution of six moments was reconstructed, and the phase distribution of six moments was compared[61]

下载图片 查看原文

图 35. 高功率激光驱动器焦斑诊断示意图。(a)NIF终端光学组件结构示意图64;(b)3ω光束测量原理图63;(c)实验采集的衍射斑63

Fig. 35. Schematic of focal spot diagnosis for high power laser driver. (a) Schematic of NIF terminal optical component[64]; (b) schematic of 3ω beam measurement[63]; (c) diffraction pattern collected by experiment[63]

下载图片 查看原文

图 36. 3ω光束重建结果63。相位板面的(a)振幅和(b)相位分布;近场的(c)振幅和(d)相位分布

Fig. 36. Reconstruction results of 3ω beam[63]. (a) Amplitude and (b) phase distributions of phase mark; (c) amplitude and (d) phase distributions of near-field

下载图片 查看原文

图 37. CCD采集图像与重建结果的对比,以及焦点附近不同平面上的强度分布,图片上方的数字表示与焦点平面的距离63。(a)CCD采集图像;(b)重建结果;(c)焦点附近不同平面上的强度分布

Fig. 37. Comparison of CCD acquired images and reconstruction results,and intensity distribution on different planes near the focal spot, the number on the top of the image indicates the distance from focal plane[63]. (a) CCD acquired image; (b) reconstruction result; (c) intensity distribution on different planes near the focal spot

下载图片 查看原文

图 38. 自参考时域剪切纳秒相位测量技术实验装置70

Fig. 38. Schematic of self-reference time-domain shear nanosecond phase measurement[70]

下载图片 查看原文

图 39. 不同脉宽脉冲重建结果70。(a)~(d)记录的时间拍频信号;(e)~(h)重建的时间相位分布(红色虚线)和示波器记录的时间强度分布(绿色实线);(i)~(l)计算光谱强度分布(蓝色实线)和测得的光谱强度分布(红色虚线)

Fig. 39. Reconstruction results under different pulse widths[70]. (a)-(d) Recorded time beat frequency signal; (e)-(h) reconstructed time phase distribution (red dashed line) and time intensity distribution recorded by oscilloscope (green solid line); (i)-(l) calculated spectral intensity distribution (blue solid line) and measured spectral intensity distribution (red dashed line)

下载图片 查看原文

图 40. 飞秒激光时空特性测量原理图72。(a)CMISS原理图;(b)待测光源的光谱分布;相位板的(c)振幅和(d)相位分布;(e)记录的衍射光斑阵列

Fig. 40. Schematic of measuring the space-time characteristics of femtosecond laser[72]. (a) Schematic of CMISS; (b) spectral distribution of the source to be measured; (c) amplitude and (d) phase distribution of the phase mask; (e) recorded diffraction pattern

下载图片 查看原文

图 41. CMISS重建结果及时空耦合结果72。(a1)~(a5)记录的5个不同波长的衍射斑,图片上方的数字对应波长;重建的(b1)~(b5)振幅和(c1)~(c5)相位;(d)重建的超短脉冲时空耦合三维振幅轮廓,以及在各方向上的投影;重建的不同时刻的(e1)~(e3)振幅和(f1)~(f3)相位,图片下方的数字对应时刻;(g1)y=512处x-t的二维振幅分布以及(g2)x=512处y-t的二维振幅分布

Fig. 41. CMISS reconstruction results and spatio-temporal coupling results[72]. (a1)-(a5) Diffraction patterns of five different wavelengths, the numbers on the top of the pictures correspond to the wavelengths; reconstructed (b1)-(b5) amplitude and (c1)-(c5) phase; (d) reconstructed 3D amplitude contour of the spatiotemporal coupling of ultra-short pulses, and the projection on each side; reconstructed (e1)-(e3) amplitudes and (f1)-(f3) phases at different times, the numbers at the bottom of the pictures correspond to the time; (g1) two-dimensional amplitude distribution of x-t at y=512 and (g2) two-dimensional amplitude distribution of y-tat x=512

下载图片 查看原文

图 42. SUM-CDI超快相位成像实验光路78

Fig. 42. Experimental lightpath of SUM-CDI ultrafast phase imaging[78]

下载图片 查看原文

图 43. SUM-CDI时间序列及重建结果78。(a)探测光与脉冲光之间的时间关系;(b)记录的衍射斑阵列;SUM-CDI技术重建的(c)振幅和(d)相位,上方数字表示时间,左侧数字表示发次

Fig. 43. Time series and reconstructed results of SUM-CDI[78]. (a) Time relationship between detected light and pulsed light; (b) recorded diffraction patterns; (c) amplitude and (d) phase reconstructed by SUM-CDI, top number represents the time, left number represents the transmission time

下载图片 查看原文

图 44. Ptychography算法重建相位唯一性原理图26。(a)重叠光斑示意图;(b)共轭相位示意图;(c)探测光平移带来的相位变换示意图,箭头表示移动方向;(d)真实相位对应的复空间向量;(e)共轭相位对应的复空间向量

Fig. 44. Physical diagram of phase uniqueness reconstructed by Ptychography algorithm[26]. (a) Schematic of overlapping beam spots; (b) schematic of conjugate phases; (c) schematic of phase transformation caused by detecting beam translation, and arrows indicate the direction of movement; (d) complex space vector corresponding to the true phase; (e) complex space vector corresponding to the conjugate phase

下载图片 查看原文

图 45. 利用GDLM重建样品的频谱和复振幅25。样品初始(a)复振幅和(b)频谱分布;(c)相位板面透射光的复振幅分布;重建样品的(d)复振幅和(e)频谱分布;(f)重建样品和初始样品之间的误差

Fig. 45. Spectra and complex amplitude of sample reconstructed by GDLM[25]. (a) Initial complex amplitude and (b) spectral distribution of sample; (c) complex amplitude distribution of the transmitted light on phase mask; reconstructed (d) complex amplitude and (e) spectral distribution of the sample; (f) difference between the reconstructed and initial samples

下载图片 查看原文

图 46. 不同照明光重建效果对比25。(a)随机相位板;(b)五边形光阑;(c)矩形光阑;(d)~(f)3种照明光函数得到的重建结果;(g)不同照明条件下的误差收敛曲线

Fig. 46. Comparison of reconstruction effects with different sources[25]. (a) Phase mask; (b) pentagonal stop; (c) rectangular stop; (d)-(f) reconstruction results of three illumination functions; (g) error convergence curves under different illumination conditions

下载图片 查看原文

昌成成, 潘良泽, 徐英明, 吴丽青, 陶华, 刘登, 陈飞, 刘诚, 朱健强. 计算光学成像在惯性约束聚变中的应用及技术进展[J]. 光学学报, 2023, 43(22): 2200001. Chengcheng Chang, Liangze Pan, Yingming Xu, Liqing Wu, Hua Tao, Deng Liu, Fei Chen, Cheng Liu, Jianqiang Zhu. Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion[J]. Acta Optica Sinica, 2023, 43(22): 2200001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!