光学学报, 2023, 43 (22): 2200001, 网络出版: 2023-11-20  

计算光学成像在惯性约束聚变中的应用及技术进展

Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion
作者单位
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室,上海 201800
2 中国科学院中国工程物理研究院高功率激光物理联合实验室,上海 201800
3 装备发展部某中心,北京 100034
引用该论文

昌成成, 潘良泽, 徐英明, 吴丽青, 陶华, 刘登, 陈飞, 刘诚, 朱健强. 计算光学成像在惯性约束聚变中的应用及技术进展[J]. 光学学报, 2023, 43(22): 2200001.

Chengcheng Chang, Liangze Pan, Yingming Xu, Liqing Wu, Hua Tao, Deng Liu, Fei Chen, Cheng Liu, Jianqiang Zhu. Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion[J]. Acta Optica Sinica, 2023, 43(22): 2200001.

参考文献

[1] Breakthrough of the year[EB/OL]. [2023-03-02]. https://www.science.org/content/article/breakthrough-2021.

[2] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448.

[3] Park H S, Hurricane O A, Callahan D A, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility[J]. Physical Review Letters, 2014, 112(5): 055001.

[4] Denis V, Beau V, Le Deroff L, et al. The laser megajoule facility: laser performances and comparison with computational simulation[J]. Proceedings of SPIE, 2017, 10084: 100840I.

[5] Zhu J Q, Zhu J, Li X C, et al. High power glass laser research progresses in NLHPLP[J]. Proceedings of SPIE, 2017, 10084: 1008405.

[6] Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548.

[7] A shot for the ages: fusion ignition breakthrough hailed as "one of the most impressive scientific feats of the 21st century"[EB/OL]. [2023-03-02]. https://www.llnl.gov/news/shot-ages-fusion-ignition-breakthrough-hailed-one-most-impressive-scientific-feats -21st.

[8] 李小燕. 高功率装置中的光束近场研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2010.

    LiX Y. Study on near field of the beam in high power laser facility[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2010.

[9] 焦兆阳. 高功率激光驱动器终端光学系统的光束时空特性研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2014.

    JiaoZ Y. Research on spatial temporal characteristics of optical beam in final optics system of high power laser driver[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2014.

[10] Hartmann P, Mauch R, Kohlmann H. Advances in homogeneity measurement of optical glasses at the Schott 20-in. Fizeau interferometer[J]. Proceedings of SPIE, 1996, 2775: 108-114.

[11] 蒋志凌. 哈特曼波前传感器特性和应用研究[D]. 武汉: 中国科学院武汉物理与数学研究所, 2005.

    JiangZ L. Research on characteristics and application of Hartmann wavefront sensor[D]. Wuhan: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 2005.

[12] Zacharias R A, Beer N R, Bliss E S, et al. National Ignition Facility alignment and wavefront control[J]. Proceedings of SPIE, 2004, 5341: 168-179.

[13] Haynam C A, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

[14] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

[15] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[16] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[17] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

[18] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

[19] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

[20] Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 2010, 82(12): 121104.

[21] Matsuoka S, Yamakawa K. Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method[J]. Journal of the Optical Society of America B, 2000, 17(4): 663-667.

[22] Kruschwitz B E, Bahk S W, Bromage J, et al. Accurate target-plane focal-spot characterization in high-energy laser systems using phase retrieval[J]. Optics Express, 2012, 20(19): 20874-20883.

[23] Wang H Y, Liu C, Veetil S P, et al. Measurement of the complex transmittance of large optical elements with Ptychographical iterative engine[J]. Optics Express, 2014, 22(2): 2159-2166.

[24] 潘兴臣, 陶华, 刘诚, 等. 基于相位调制的单次曝光波前测量在高功率激光驱动器中的应用[J]. 中国激光, 2016, 43(1): 0108001.

    Pan X C, Tao H, Liu C, et al. Applications of iterative algorithm based on phase modulation in high power laser facilities[J]. Chinese Journal of Lasers, 2016, 43(1): 0108001.

[25] He X L, Pan X C, Tao H A, et al. Generalized deterministic linear model for coherent diffractive imaging[J]. AIP Advances, 2022, 12(6): 065225.

[26] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150: 87-184.

[27] Zuo J M, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419-1421.

[28] Godden T M, Suman R, Humphry M J, et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.

[29] 潘兴臣, 刘诚, 肖伟刚, 等. 相干衍射成像技术的最新进展:层叠相位重建技术[J]. 激光与光电子学进展, 2022, 59(22): 2200001.

    Pan X C, Liu C, Xiao W G, et al. Recent developments in coherent diffraction imaging: ptychographic iterative engine[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2200001.

[30] Pan X C, Liu C, Zhu J Q. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 2013, 103(17): 171105.

[31] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2015, 3(1): 9-14.

[32] 昌成成, 潘兴臣, 陶华, 等. 大角度倾斜照明条件下的PIE迭代重建算法研究[J]. 光学学报, 2020, 40(17): 1705001.

    Chang C C, Pan X C, Tao H, et al. Reconstruction algorithm for ptychographic iterative engine with highly tilted illumination[J]. Acta Optica Sinica, 2020, 40(17): 1705001.

[33] Chang C C, Pan X C, Tao H A, et al. Single-shot ptychography with highly tilted illuminations[J]. Optics Express, 2020, 28(19): 28441-28451.

[34] Chang C C, Pan X C, Tao H A, et al. 3D single-shot ptychography with highly tilted illuminations[J]. Optics Express, 2021, 29(19): 30878-30891.

[35] Goldberger D, Barolak J, Durfee C G, et al. Three-dimensional single-shot ptychography[J]. Optics Express, 2020, 28(13): 18887-18898.

[36] Dong X, Pan X C, Liu C, et al. Single shot multi-wavelength phase retrieval with coherent modulation imaging[J]. Optics Letters, 2018, 43(8): 1762-1765.

[37] Dong X, Pan X C, Liu C, et al. An online diagnosis technique for simultaneous measurement of the fundamental, second and third harmonics in one snapshot[J]. High Power Laser Science and Engineering, 2019, 7(3): e48.

[38] 王海燕. 高精度非干涉相位检测技术研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2015.

    WangH Y. High-resolution phase measurement technology based on coherent diffractive imaging[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2015.

[39] 陶华. 基于相干调制成像的高功率激光光束波前测量方法研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2016.

    TaoH. Research on wavefront measurement method of high power laser beam based on coherent modulation imaging[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2016.

[40] 潘兴臣. 相干衍射成像在激光驱动器中的应用研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2016.

    PanX C. Study on the application of coherent diffraction imaging in laser driver[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2016.

[41] He X, Liu C, Zhu J Q. On-line beam diagnostics based on single-shot beam splitting phase retrieval[J]. Chinese Optics Letters, 2018, 16(9): 091001.

[42] He X, Pan X C, Liu C, et al. Single-shot phase retrieval based on beam splitting[J]. Applied Optics, 2018, 57(17): 4832-4838.

[43] Xu Y M, Pan X C, Liu C, et al. Single-shot phase reconstruction based on beam splitting encoding and averaging[J]. Optics Express, 2021, 29(26): 43985-43999.

[44] Lubin M J, Soures J M, Goldman L M. Large-aperture Nd-glass laser amplifier for high-peak-power application[J]. Journal of Applied Physics, 1973, 44(1): 347-350.

[45] Kuzmin A A, Khazanov E A, Shaykin A A. Large-aperture Nd∶glass laser amplifiers with high pulse repetition rate[J]. Optics Express, 2011, 19(15): 14223-14232.

[46] Brady G R, Fienup J R. Measurement range of phase retrieval in optical surface and wavefront metrology[J]. Applied Optics, 2009, 48(3): 442-449.

[47] Deng X M, Liang X C, Chen Z Z, et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986, 25(3): 377-381.

[48] 李同海. 聚合物微透镜及其阵列的研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2006.

    LiT H. Study on polymer microlens and its array[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2006.

[49] Wang H Y, Liu C, Pan X C, et al. The application of ptychography in the field of high power laser[J]. Proceedings of SPIE, 2015, 9255: 925534.

[50] 周忆, 廖静, 郭蕊, 等. 大口径精密光学元件低应力支撑结构研究[J]. 激光与红外, 2014, 44(5): 554-558.

    Zhou Y, Liao J, Guo R, et al. Study on low-stress supporting structure for large-aperture precision optical element[J]. Laser & Infrared, 2014, 44(5): 554-558.

[51] 吴存学, 周忆, 廖强, 等. 大型光学镜片的无应力夹持研究[J]. 现代制造工程, 2005(7): 57-59.

    Wu C X, Zhou Y, Liao Q, et al. Research on unstressing retain of large-scale optical mirror[J]. Machinery Manufacturing Engineer, 2005(7): 57-59.

[52] Tietbohl G L, Sommer S C. Stability design considerations for mirror support systems in ICF lasers[J]. Proceedings of SPIE, 1997, 3047: 649-660.

[53] Kaufman M I, Celeste J R, Frogget B C, et al. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)[J]. Proceedings of SPIE, 2006, 6289: 628906.

[54] Cheng B, Zhang X J, Liu C, et al. Full-field stress measurement based on polarization ptychography[J]. Journal of Optics, 2019, 21(6): 065602.

[55] 张乐, 刘小刚, 闭治跃, 等. 高功率激光装置高热流密度散热技术探讨[J]. 环境技术, 2018, 36(2): 82-88.

    Zhang L, Liu X G, Bi Z Y, et al. Reviews of heat dissipation technology with high heat flux for high-power laser system[J]. Environmental Technology, 2018, 36(2): 82-88.

[56] Chow R, Ault L E, Taylor J R, et al. Thermally induced distortion of a high-average-power laser system by an optical transport system[J]. Proceedings of SPIE, 1999, 3782: 246-254.

[57] 陶华, 刘诚, 潘兴臣, 等. 相干调制成像技术测量高重复频率激光器光学元件热畸变[J]. 中国激光, 2016, 43(11): 1101002.

    Tao H, Liu C, Pan X C, et al. Measurement of thermal distortion of the optical element in high repetition rate laser with coherent modulation imaging[J]. Chinese Journal of Lasers, 2016, 43(11): 1101002.

[58] Jeong T M, Choi I W, Hafz N, et al. Wavefront correction and customization of focal spot of 100 TW Ti∶sapphire laser system[J]. Japanese Journal of Applied Physics, 2007, 46(12): 7724-7730.

[59] Jeong T M, Kim C M, Ko D K, et al. Reconstruction of wavefront aberration of 100-TW Ti∶sapphire laser pulse using phase retrieval method[J]. Journal of the Optical Society of Korea, 2008, 12(3): 186-191.

[60] Bromage J, Bahk S W, Irwin D, et al. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers[J]. Optics Express, 2008, 16(21): 16561-16572.

[61] Tao H, Veetil S P, Pan X C, et al. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 2015, 54(22): 6632-6639.

[62] Pan X C, Veetil S P, Liu C, et al. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging[J]. Laser Physics Letters, 2016, 13(5): 055001.

[63] He X L, Tao H, Pan X C, et al. Single-shot measurement of the near-field and focal spot profiles of a 351 nm laser beam for SGII-upgraded facility with multiple-focal-plane constraint coherent modulation imaging[J]. Optics Express, 2022, 30(24): 42861-42874.

[64] Wegner P J, Auerbach J M, Biesiada T A,, et al. NIF final optics system: frequency conversion and beam conditioning[J]. Proceedings of SPIE, 2004, 5341: 180-189.

[65] Zhu J Q. Review of special issue on high power facility and technical development at the NLHPLP[J]. High Power Laser Science and Engineering, 2019, 7(1): e12.

[66] Zhu J Q, Xie X L, Sun M Z, et al. Analysis and construction status of SG-II 5PW laser facility[J]. High Power Laser Science and Engineering, 2018, 6(2): e29.

[67] Fee M S, Danzmann K, Chu S. Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy[J]. Physical Review A, 1992, 45(7): 4911-4924.

[68] Gangopadhyay S, Melikechi N, Eyler E E. Optical phase perturbations in nanosecond pulsed amplification and second-harmonic generation[J]. Journal of the Optical Society of America B, 1994, 11(1): 231-241.

[69] Bowlan P, Trebino R. Complete single-shot measurement of arbitrary nanosecond laser pulses in time[J]. Optics Express, 2011, 19(2): 1367-1377.

[70] 潘良泽, 刘诚, 朱健强. 基于时域剪切的纳秒脉冲在线测量算法[J]. 中国激光, 2021, 48(24): 2404004.

    Pan L Z, Liu C, Zhu J Q. Online measurement algorithm of nanosecond pulses based on temporal shearing[J]. Chinese Journal of Lasers, 2021, 48(24): 2404004.

[71] Pan L Z, Liu C, Veetil S P, et al. Temporal self-referencing technique for the diagnostics of nanosecond laser pulse[J]. Optics and Lasers in Engineering, 2022, 148: 106751.

[72] Xu Y M, Yi Y J, Zhu P, et al. Simple single-shot complete spatiotemporal intensity and phase measurement of an arbitrary ultrashort pulse using coherent modulation imaging[J]. Optics Letters, 2022, 47(21): 5664-5667.

[73] 郑恒毅, 尹富康, 王铁军, 等. 飞秒激光成丝的衍射分析方法[J]. 中国激光, 2022, 49(24): 2408001.

    Zheng H Y, Yin F K, Wang T J, et al. Diffraction analysis method of femtosecond laser filamentation[J]. Chinese Journal of Lasers, 2022, 49(24): 2408001.

[74] Tiwari V, Sutton M A, McNeill S R. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation[J]. Experimental Mechanics, 2007, 47(4): 561-579.

[75] Yue Q Y, Cheng Z J, Han L, et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena[J]. Optics Express, 2017, 25(13): 14182-14191.

[76] Liang J Y, Zhu L R, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 2018, 7: 42.

[77] 王爱伟, 李驰, 戴庆. 基于相干电子源的超快低能电子全息成像[J]. 中国激光, 2023, 50(1): 0113003.

    Wang A W, Li C, Dai Q. Ultrafast low-energy electron holographic imaging based on coherent electron source[J]. Chinese Journal of Lasers, 2023, 50(1): 0113003.

[78] Xu Y M, Pan X C, Sun M Y, et al. Single-shot ultrafast multiplexed coherent diffraction imaging[J]. Photonics Research, 2022, 10(8): 1937-1946.

[79] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814.

[80] Significant progress has been made in conducting laser driven proton acceleration experiments on the 9th picosecond watt of the Shenguang II facility[EB/OL]. [2023-03-02]. http://www.siom.cas.cn/jgsz/ggljgwlgjsys/xwdt/202112/t20211201_6283205.html.

[81] Zhong J Y, Li Y T, Wang X G, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6(12): 984-987.

[82] Ping Y L, Zhong J Y, Wang X G, et al. Turbulent magnetic reconnection generated by intense lasers[J]. Nature Physics, 2023, 19(2): 263-270.

昌成成, 潘良泽, 徐英明, 吴丽青, 陶华, 刘登, 陈飞, 刘诚, 朱健强. 计算光学成像在惯性约束聚变中的应用及技术进展[J]. 光学学报, 2023, 43(22): 2200001. Chengcheng Chang, Liangze Pan, Yingming Xu, Liqing Wu, Hua Tao, Deng Liu, Fei Chen, Cheng Liu, Jianqiang Zhu. Application and Progress of Computational Optical Imaging in Inertial Confinement Fusion[J]. Acta Optica Sinica, 2023, 43(22): 2200001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!