中国激光, 2023, 50 (5): 0506002, 网络出版: 2023-02-14   

单跨光纤长距离混沌激光保真传输实验研究 下载: 512次

Experiment on Long-Distance Fidelity Transmission of Laser Chaos over Single-Span Optical Fiber
作者单位
1 新型传感器与智能控制教育部重点实验室(太原理工大学),山西 太原 030024
2 太原理工大学物理与光电工程学院,山西 太原 030024
摘要
混沌激光在载波通信、密钥分发等信息安全传输领域具有巨大的应用潜力,但放大器自发辐射噪声、光纤色散以及非线性效应会降低混沌信号的保真度,进而限制单跨光纤混沌同步的距离。本文通过研究滤波器线宽、光纤色散补偿偏差以及混沌入纤功率对混沌激光传输保真度的影响,探明了单跨光纤混沌同步的极限距离,并在实验中实现了200 km单跨光纤中保真度为0.9214的混沌信号传输。以此信号为驱动,获得了同步系数为0.9043的共驱混沌同步,为长距离混沌载波通信与密钥分发的实现提供了基础。
Abstract

Results and Discussions Filtering width, fiber dispersion compensation deviation, and fiber input power are important factors that affect the fidelity of chaotic transmission. After amplification by the EDFA, ASE noise is involved in the chaotic signal, degrading the fidelity of the chaotic transmission. An optical filter suppresses the ASE noise. The most appropriate filtering width (0.2 nm) was confirmed (Fig. 4). Furthermore, an optimized dispersion compensation deviation of 0 ps/nm was achieved in the scenario with a fiber length of 90 km while the filtering width was set to 0.2 nm (Fig. 5). In addition to the ASE noise and fiber dispersion, fiber nonlinearity can also affect transmission fidelity: the greater the fiber input power, the greater the nonlinearity-induced distortion. With the optimized filtering width and dispersion compensation deviation, the most appropriate fiber input power of 3.1 mW was identified for a fiber length of 90 km (Fig. 6). For a larger fiber length, the optimized power increased correspondingly. Finally, chaotic transmission over single-span fibers with different lengths was examined, and a transmission limit of 200 km with a fidelity of 0.9214 was achieved experimentally, with a filtering width of 0.2 nm, dispersion compensation deviation of 0 ps/nm, and fiber input power of 18 mW (Fig. 7). Driven by the laser chaos after 200 km transmission, long-distance chaos synchronization with a synchronization coefficient of 0.9043 was obtained (Fig. 8).

Objective

Chaotic secure communication, including carrier communication and key distribution, has been widely studied owing to its advantages of high speed, long distance, and compatibility with current communication networks. For practical applications in communication networks, the rate and distance of chaotic secure communication are factors that must be considered. Much effort has been devoted to improving the rate to the order of gigabits per second. In terms of distance, it has been extensively reported that chaotic transmission over a single-span fiber of approximately 100 km can be realized experimentally. However, the transmission limit of single-span fibers remains unclear. It is worth noting that, the fidelity of laser chaos is degraded by the amplified spontaneous emission noise of optical amplifiers, as well as fiber dispersion and nonlinearity, thus affecting the transmission distance. In this study, by optimizing the filtering width, dispersion compensation deviation, and input fiber power, the aforementioned influences on the transmission performance are reduced, and the distance limit of chaotic transmission over a single-span fiber is ascertained. In the experiment, chaotic transmission over a 200 km single-span fiber with a fidelity of 0.9214 is achieved. Driven by this chaotic signal, commonly driven chaos synchronization with a synchronization coefficient of 0.9043 is obtained. This provides a basis for long-distance chaotic carrier communication and key distribution.

Methods

We used a semiconductor subject to external optical feedback to generate laser chaos as the drive signal. To meet the input power of the fiber, an erbium-doped fiber amplifier (EDFA) was used to pre-amplify the drive signal. Then, the drive signal was divided into two branches: one branch was directly transmitted to the local response laser, and the other was transmitted to the remote response laser through the single-span and dispersion-compensated fibers. In the transmission path, an EDFA and optical filter were arranged to compensate for the power loss of the fiber and reduce the amplified spontaneous emission (ASE) noise of the EDFA, respectively. In the experiment, the effects of the filtering width, dispersion compensation deviation, and fiber input power on the transmission fidelity of laser chaos over single fibers with different lengths were investigated in detail, and the optimized parameters to realize the transmission limit were ascertained. Finally, to realize chaos synchronization, the drive signals before and after transmission were injected separately into the response lasers with matched parameters.

Conclusions

In this study, the effects of the filtering width, fiber dispersion compensation deviation, and fiber input power on the fidelity of chaotic transmission were investigated experimentally. The transmission limit over a single-span fiber is confirmed. With filtering width of 0.2 nm, a dispersion compensation deviation of 0 ps/nm, fiber input power of 18 mW, and 200 km chaotic transmission distance with a fidelity of 0.9214 are realized. By using the laser chaos after 200 km transmission as the drive, long-distance chaos synchronization with a synchronization coefficient of 0.9043 is obtained, providing a basis for chaotic carrier communication and key distribution oriented toward metro area networks.

1 引言

保密通信一直备受研究人员关注。混沌激光保密通信(包括载波通信与密钥分发两种形式)1-4以其高速、长距离、与现行光通信系统兼容等优点得到了广泛研究,同时也推动了混沌保密通信技术的快速发展。面向现行光纤通信网络的需求,目前的混沌激光保密通信主要面临提升传输速率与传输距离两大问题。在提升传输速率方面,研究人员已经进行了诸多有益探索,将载波通信与密钥分发速率分别提高至数十Gb/s5-9与Gb/s10-14量级。

在提升传输距离方面,国内外学者也开展了大量的研究工作。实验上:2005年,Argyris教授团队15在希腊雅典城120 km的城域网中进行了现场测试,实现了1 Gb/s混沌载波通信;2010年,该团队16通过色散后补偿的方式实现了基于光子集成混沌半导体激光器的100 km混沌传输;2010年,Larger教授团队17在法国贝桑松120 km的城域网中将混沌载波通信速率提升至10 Gb/s;2012年,Uchida教授团队18从混沌同步的激光器输出波形中抽取一致随机数作为共享密钥,实现了速率为182 kb/s、距离为120 km的混沌密钥分发;2018年,义理林教授团队19利用后置色散补偿实现了基于光电振荡器的100 km、30 Gb/s保密传输;2021年,王安帮教授团队20利用超发光二极管驱动两个多纵模法布里-珀罗激光器实现了同步距离为160 km、速率为0.75 Gb/s的混沌密钥分发。理论上:2004年,Kanakidis等21通过数值模拟方法研究了光纤传输对激光器同步质量的影响,并认为利用对称色散补偿有望实现200 km的混沌同步;2008年,夏光琼教授团队22提出利用光放大器和色散位移光纤预计可以实现200 km、同步系数为0.99的高质量混沌同步;近期,义理林教授团队23和程孟凡教授团队24相继提出了基于相干检测与数字信号处理的通信方案,这两种方案可以大幅提升传输距离。

综合分析现有报道可以发现,实验中实现的单跨光纤混沌同步距离均为百千米左右,但其极限距离尚不明确。本文通过详细研究光滤波器线宽、光纤色散偏差、混沌信号入纤功率对混沌激光传输保真度的影响,探明了抑制放大器自发辐射噪声、光纤色散以及非线性损伤的最优参数,进而探明了单跨光纤混沌同步的极限距离(实验中获得了极限距离为200 km的单跨光纤混沌激光保真传输),同时构建了面向长距离混沌载波通信与密钥分发的共驱同步系统。

2 实验装置

混沌激光保真传输的实验装置如图1所示。驱动激光器(DL)在外部镜面反馈下产生混沌信号。该信号经过掺铒光纤放大器(EDFA1)、光滤波器(OF1)后一分为二,其中一路直接注入响应激光器RLA,另一路经过单模光纤(SMF)、色散补偿光纤(DCF)、EDFA2和OF2后注入响应激光器RLB。利用光电探测器(PD)将激光器输出的光信号转换为电信号,之后使用频谱分析仪测量混沌信号的频谱,并用高速实时示波器采集其时序,对应的光谱可用光谱分析仪直接测量得到。其中:EDFA1用于对混沌信号进行预放大,调节入纤功率值(Pin);EDFA2用来补偿光纤链路和光滤波器引入的损耗,调节出纤功率值(Pout);OF1和OF2分别用于滤除EDFA1、EDFA2引入的放大器自发辐射(ASE)噪声;色散补偿光纤用于补偿单模光纤引入的色散。

图 1. 单跨光纤长距离共驱混沌同步实验装置图(DL:驱动激光器;RL:响应激光器;OC:光耦合器;PC:偏振控制器;OI:光隔离器;VOA:可调光衰减器;FM:反馈镜;EDFA:掺铒光纤放大器;OF:光滤波器;SMF:单模光纤;DCF:色散补偿光纤;Pj:注入功率)

Fig. 1. Experimental setup of commonly-driven chaos synchronization over single-span optical fiber (DL: driven laser; RL: response laser; OC: optical coupler; PC: polarization controller; OI: optical isolator; VOA: variable optical attenuator; FM: feedback mirror; EDFA: erbium-doped fiber amplifier; OF: optical filter; SMF: single-mode fiber; DCF: dispersion compensation fiber; Pj: injection power )

下载图片 查看所有图片

驱动激光器为离散模式激光器(EP1550-0-DM-B05-FM),阈值电流Ith=11.2 mA;掺铒光纤放大器(CEFA-C-HG-SM-50-B130)的输入功率范围为-50 dBm~0 dBm,小信号增益为40 dB,噪声系数最大为4 dB;带宽可调节的可调谐光滤波器(XTM-50)的滤波带宽为6.25~625 GHz,滤波深度为40 dB;光电探测器(XPDV2120RA)的截止带宽为50 GHz;光谱分析仪(AQ6370D)的分辨率为0.02 nm;频谱分析仪(FSW-50)的带宽为50 GHz;高速实时示波器(LABMASTER10ZI)的带宽为36 GHz,采样率为80 GSa/s。

3 实验结果

3.1 单跨光纤混沌保真传输距离的影响因素

本文采用互相关系数CC来定量表征混沌激光传输的保真度25。互相关系数的表达式为

CC=PA(t-τ0)-PA(t-τ0)PB(t)-PB(t)2PA(t-τ0)-PA(t-τ0)2PB(t)-PB(t)2

式中:PAPB分别表示两束混沌激光的平均光功率;τ0表示两路混沌信号的相对时延;·表示取平均值。互相关系数的取值范围为0~1,其值越接近1说明混沌激光传输的保真度越高,越接近0说明保真度越低。此外,互相关系数也可以用来表征响应激光器之间的同步性。

实验中,驱动激光器的偏置电流为13.4 mA(1.2Ith),工作温度为25.1 ℃,其自由运行时的输出功率为0.38 mW,静态中心波长为1549.482 nm。驱动激光器通过镜面反馈产生混沌,其中,反馈强度κf为反馈光与激光器静态输出光的功率之比,反馈延时τf为光从激光器到反馈镜的往返时间。实验中,反馈强度κf=6.5%,反馈延时τf=80 ns。图2给出了驱动激光器的输出信号特征,其静态光谱与混沌光谱如图2(a)所示,其中虚线为激光器的静态光谱,实线为混沌信号的光谱。与静态光谱相比,混沌光谱会有一定程度的展宽,其中心波长也红移至1549.5 nm。混沌频谱如图2(b)所示,其中:蓝色曲线为混沌信号频谱,其80%能量带宽(BW)26为4.8 GHz;灰色区域为噪声基底。图2(c)为混沌信号的时序,图2(d)为混沌信号的自相关曲线,相关系数最高为1,表明背靠背条件下可以实现混沌保真传输。

图 2. 驱动激光器输出信号的特征。(a)光谱;(b)频谱;(c)时序;(d)自相关曲线

Fig. 2. Characteristics of driven laser output signal. (a) Optical spectra; (b) frequency spectra; (c) time series; (d) autocorrelation curve

下载图片 查看所有图片

为补偿光纤链路的损耗,使用EDFA对传输后的混沌信号进行放大,但放大的同时会引入大量ASE噪声,降低了信噪比,从而恶化了混沌激光的长距离传输性能。利用光滤波器对放大后的混沌信号进行滤波可以降低ASE噪声。本文研究了不同滤波线宽下混沌激光经光纤传输后的保真度。实验中,光纤链路的长度设置为L=90 km,并对光纤链路的色散进行了充分补偿。调节EDFA1的增益为16 dB,然后调节VOA使输入光纤的功率Pin=3 mW,同时通过调节EDFA2的增益使出纤功率等于入纤功率。

图3(a)给出了放大前后的混沌光谱,其中虚线为放大前的混沌光谱,实线为放大后的混沌光谱。可见:放大后的混沌光谱两侧的功率水平相比放大前的光谱明显提升;在混沌信号被放大的同时,两侧的噪声信号也被放大了,引入了ASE噪声。对混沌信号进行带通滤波处理,滤波线宽均为滤波器光谱的3 dB宽度,滤波后的结果如图3(b)所示。虚线对应的滤波线宽为0.1 nm,可见,当滤波线宽略小于混沌线宽时,混沌信号会失真;实线对应的滤波线宽为0.4 nm,虽然此时的混沌信号被完整保留,但由于滤波线宽较宽,两侧仍存在部分ASE噪声,这也会降低混沌信号传输的保真度,下文将详细说明。

图 3. 混沌光谱。(a)放大前后的光谱;(b)滤波宽度分别为0.1 nm和0.4 nm时的光谱

Fig. 3. Chaos spectra. (a) Optical spectra before and after amplification; (b) optical spectra with filtering widths of 0.1 nm and 0.4 nm

下载图片 查看所有图片

图4(a)、(b)、(c)分别是滤波线宽为0.1、0.2、0.5 nm时(OF1线宽与OF2线宽相同),传输前后混沌信号的相关曲线,其保真度的典型结果分别为0.9945、0.9950和0.9938。这一结果说明滤波线宽不同时混沌激光的传输保真度也不同。图4(d)给出了混沌激光传输保真度随滤波线宽变化的曲线,曲线整体呈先增大后减小的趋势。原因如下:当滤波线宽从0.1 nm增至0.2 nm时,混沌信号逐渐趋于完整,保真度呈增大的趋势;当滤波线宽为0.2 nm时,混沌信号被完全滤出,ASE噪声的能量最低,信噪比最高,此时混沌信号的保真度也最高;随着滤波器线宽继续增大,ASE噪声逐渐增加,信噪比降低,导致保真度呈减小的趋势。其他长度光纤链路下混沌信号的传输保真度也有类似的变化趋势,此处不再赘述。

图 4. 滤波线宽对混沌信号保真度的影响。(a)~(c)滤波线宽为0.1、0.2、0.5 nm时,传输前后混沌信号的相关曲线;(d)混沌信号保真度随滤波线宽变化的曲线

Fig. 4. Influence of filtering width on transmission fidelity of chaotic signal. (a)-(c) Correlation curves of chaotic signal before and after transmission with filtering width of 0.1, 0.2, 0.5 nm; (d) fidelity of chaotic signal as a function of filtering width

下载图片 查看所有图片

已知标准单模光纤在1550 nm波段具有最大的色散系数,在长距离传输过程中,光纤链路色散对混沌信号的影响更为明显。当光纤色散值为负值时,混沌信号的脉冲会被压缩;当光纤色散值为正值时,混沌信号的脉冲会展宽。这两种情况均会降低混沌激光传输的保真度,所以需要研究色散补偿偏差(Δβ)对混沌信号保真度的影响。本课题组向长飞光纤光缆股份有限公司定制了多盘光纤,每盘光纤均由单模光纤和色散补偿光纤组成。其中,色散补偿光纤与单模光纤的长度之比反比于色散系数之比。例如,总长度为90 km的光纤,其构成包括9 km色散补偿光纤[色散系数为-153 ps/(nm·km)]和81 km单模光纤[色散系数为17 ps/(nm·km)]。当单模光纤与色散补偿光纤的长度比例失谐时,将会引入一定程度的色散补偿偏差,进而影响混沌信号的保真度。图5(a)、(b)、(c)分别给出了色散补偿偏差为-3.1、0、+2.9 ps/nm时,传输前后混沌信号的相关曲线,对应的典型保真度分别为0.9928、0.9950和0.9930。图5(d)给出了混沌激光传输保真度随色散补偿偏差变化的曲线,可以看出:随着色散补偿偏差从-3.1 ps/nm增大至+2.9 ps/nm,混沌激光传输保真度呈先增大后减小的趋势。色散补偿偏差的绝对值越大,即色散补偿光纤与单模光纤的长度比例失谐越严重,混沌信号受到的损伤就越大,因而混沌信号的保真度就越低。当色散补偿偏差Δβ=0 ps/nm时,混沌信号的保真度取得最大值。其他长度光纤链路下,色散补偿偏差对混沌信号保真度的影响具有相同的趋势,此处也不再赘述。

图 5. 色散补偿偏差对混沌信号保真度的影响。(a)~(c)色散补偿偏差为-3.1、0、+2.9 ps/nm时,传输前后混沌信号的相关曲线;(d)混沌信号保真度随色散补偿偏差变化的曲线

Fig. 5. Influence of dispersion compensation deviation on transmission fidelity of chaotic signal. (a)-(c) Correlation curves of chaotic signal before and after transmission with dispersion compensation deviation of -3.1, 0, and +2.9 ps/nm; (d) fidelity of chaotic signal as a function of dispersion compensation deviation

下载图片 查看所有图片

除光纤色散和ASE噪声外,光纤的非线性效应(如自相位调制效应)也会影响混沌激光的长距离传输性能。这是因为光纤折射率在不同的激光强度下会发生变化,导致光信号自身相位发生改变,进而导致混沌信号失真,而且输入光功率越大,混沌信号保真度所受影响就越大。为了获得单跨光纤下混沌激光的最优传输性能,需要继续研究入纤功率Pin对混沌信号保真度的影响。为满足共驱同步时注入响应激光器的功率需求,在研究入纤功率的影响时,将出纤功率Pout设置为2 mW。实验中,将EDFA1的增益调至24 dB(包含OF1的损耗在内),此时OC2输出的最大功率为5 mW。此外,实验中通过VOA来控制入纤功率的大小,同时通过调节EDFA2的增益来实现不同的出纤功率。单跨光纤长度L=90 km,滤波器线宽设置为0.2 nm,光纤链路的色散为0 ps/nm。

图6(a)、(b)、(c)分别给出了入纤功率为1、3.1、5 mW时,传输前后混沌信号的相关曲线,其保真度的典型结果分别为0.9931、0.9951和0.9938。这一结果说明入纤功率不同,混沌激光传输的保真度也不同。图6(d)给出了混沌激光传输保真度随入纤功率变化的曲线,可见:随着入纤功率逐渐增大,混沌信号的保真度呈先增大后减小的趋势。其原因如下:随着入纤功率从1 mW增大至3.1 mW,EDFA2的输入功率增大,在出纤功率保持不变的条件下,EDFA2的增益随之降低,对应的ASE噪声随之减小,导致输出信号的信噪比增大,而此时的入纤功率较小,非线性效应较弱,所以混沌信号的保真度逐渐增大;当入纤功率Pin=3.1 mW时,信噪比与非线性效应的作用达到平衡,混沌信号的保真度最高;随着入纤功率从3.1 mW增大至5 mW,非线性效应增强,其作用大于信噪比增大对保真度的提升作用,因此混沌信号的保真度逐渐降低。

图 6. 入纤功率对混沌信号保真度的影响。(a)~(c)入纤功率为1、3.1、5 mW时,传输前后混沌信号的相关曲线;(d)混沌信号保真度随入纤功率变化的曲线

Fig. 6. Influence of fiber input power on transmission fidelity of chaotic signal. (a)-(c) Correlation curves of chaotic signal before and after transmission with fiber input power of 1, 3.1, 5 mW; (d) fidelity of chaotic signal as a function of fiber input power

下载图片 查看所有图片

3.2 单跨光纤混沌保真传输极限距离

图6所示的实验结果可以发现,在单跨光纤长度固定的条件下,存在一个最优入纤功率Pin,使得混沌激光的传输性能达到最优。为了探究单跨光纤混沌激光保真传输的距离,本文进一步研究了不同长度光纤链路下入纤功率对混沌信号传输保真度的影响(出纤功率固定为Pout=2 mW)。光纤越长时,光纤的链路损耗越大,对应的最优入纤功率随之增大,因此,实验中需要优化EDFA1、EDFA2的增益,以满足入纤功率和出纤功率的要求。

图7(a)、(b)、(c)分别给出了光纤长度为90、200、210 km时,传输前后混沌信号的相关曲线,其保真度的典型结果分别为0.9951、0.9214和0.8965。这一结果说明传输距离不同时,混沌激光传输的保真度也不同。图7(d)给出了混沌激光传输的最高保真度以及对应的入纤功率随光纤长度变化的曲线,可以发现:随着传输距离逐渐增加,最优入纤功率逐渐增大,混沌信号的保真度逐渐降低,尤其是传输距离达到170 km后,保真度下降的幅度明显增大。原因如下:当单跨光纤长度达到170 km时,对应的最优入纤功率已经超过12 mW,这使得自相位调制效应明显增强,恶化了混沌信号的保真度。此外,此时光纤的损耗已经达到39 dB,通过EDFA放大补偿损耗引入的大量ASE噪声进一步恶化了混沌信号的保真度。以保真度为0.9214的混沌信号为驱动信号,可以实现同步性为0.9043的共驱混沌同步(下文将详细说明)。当受到共同信号驱动的两个响应激光器间的同步性达到0.9以上时,可以实现速率在Gb/s量级的混沌密钥分发20。此时,单跨光纤混沌激光的传输距离为200 km,对应的最优入纤功率为18 mW。

图 7. 混沌信号传输距离优化。(a)~(c)传输距离为90、200、210 km时,传输前后混沌信号的相关曲线;(d)混沌信号最优入纤功率及其保真度随传输距离变化的曲线

Fig. 7. Transmission distance optimization of chaotic signal. (a)-(c) Correlation curves of chaotic signal with transmission distance of 90, 200, 210 km; (d) optimized fiber input power and fidelity of chaotic signal as a function of transmission distance

下载图片 查看所有图片

3.3 200 km共驱混沌同步实验结果

以200 km长距离混沌保真传输为基础,本课题组构建了长距离混沌同步系统。在该系统中,利用保真传输的混沌信号驱动响应激光器,实现混沌同步(如图1所示)。其中:响应激光器RLA、RLB的阈值电流分别为16 mA和16.6 mA;RLA的偏置电流为22.4 mA,工作温度为22.5 ℃,自由运行时的输出功率为0.98 mW;RLB的偏置电流为20.8 mA,工作温度为20.1 ℃,自由运行时的输出功率为1.52 mW;RLA和RLB自由运行时的中心波长均为1549.48 nm。调节EDFA1的增益为32 dB,并调节VOA使入纤功率Pin=18 mW,同时调节EDFA2的增益使Pout=2 mW,并通过调节响应端的衰减器使注入功率PjAPjB分别为0.95 mW和0.79 mW。

实验结果如图8所示,其中图8(a)和图8(b)分别为响应激光器的光谱和频谱,可以发现谱线均具有较高的一致性。混沌频谱的80%能量带宽为9.6 GHz(为消除高频噪声对同步的影响,将示波器通道内的截止带宽设置为12 GHz)。图8(c)和图8(d)分别为响应激光器输出的同步时序及其关联点图,此时同步系数可达0.9043,可以满足实际应用中的同步要求20。值得注意的是,相比于0.9214的保真度,200 km长距离混沌保真传输的同步系数略有下降,其主要原因是激光器加工工艺偏差导致响应激光器之间存在一定的参数失配。通过优化激光器加工技术,改善激光器参数的匹配程度,可以进一步提高混沌同步质量。对于更远距离的城际网传输,本课题组拟采用EDFA中继光纤传输方案来实现混沌信号的长距离传输,或者引入分布式光纤拉曼放大器,利用混合放大中继光纤传输方案进一步提升混沌信号的传输距离。相关结果将在另一篇文章中进行讨论。

图 8. 200 km共驱混沌同步实验结果。(a)光谱;(b)频谱;(c)时序;(d)关联点图

Fig. 8. Experimental results of commonly-driven chaos synchronization over 200 km optical fiber. (a) Optical spectra; (b) frequency spectra; (c) time series; (d) correlation plot

下载图片 查看所有图片

4 结论

通过实验研究了滤波器线宽、光纤色散补偿偏差以及信号入纤功率对混沌激光传输保真度的影响规律,探明了单跨光纤混沌激光传输的极限距离。在色散补偿偏差为0 ps/nm、滤波线宽为0.2 nm、入纤功率为18 mW的条件下,实现了200 km长单跨光纤中保真度为0.9214的混沌激光传输。以该混沌激光为驱动,获得了同步系数为0.9043的长距离共驱混沌同步,为面向城域网的混沌载波通信与密钥分发提供了同步基础。

参考文献

[1] 孙巍阳, 胡宝洁, 王航. 双光互注入半导体激光器混沌同步通信研究[J]. 激光与光电子学进展, 2019, 56(21): 2011404.

    Sun W Y, Hu B J, Wang H. Chaos synchronization communication based on dual-path mutual coupling semiconductor lasers[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211404.

[2] 颜森林. 激光混沌交叉发射与交替并行接收在保密通信中应用的基本理论与技术[J]. 中国激光, 2020, 47(9): 0906001.

    Yan S L. Theory and technique of cross transmittance and alternate parallel reception of laser chaos in secure communication[J]. Chinese Journal of Lasers, 2020, 47(9): 0906001.

[3] Koizumi H, Morikatsu S, Aida H, et al. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers[J]. Optics Express, 2013, 21(15): 17869-17893.

[4] Sasaki T, Kakesu I, Mitsui Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21): 26029-26044.

[5] Ai J Z, Wang L L, Wang J. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos[J]. Optics Letters, 2017, 42(18): 3662-3665.

[6] Li N Q, Susanto H, Cemlyn B, et al. Secure communication systems based on chaos in optically pumped spin-VCSELs[J]. Optics Letters, 2017, 42(17): 3494-3497.

[7] Jiang N, Zhao A K, Xue C P, et al. Physical secure optical communication based on private chaotic spectral phase encryption/decryption[J]. Optics Letters, 2019, 44(7): 1536-1539.

[8] Ke J X, Yi L L, Yang Z, et al. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization[J]. Optics Letters, 2019, 44(23): 5776-5779.

[9] Wang L S, Mao X X, Wang A B, et al. Scheme of coherent optical chaos communication[J]. Optics Letters, 2020, 45(17): 4762-4765.

[10] Jiang N, Xue C P, Liu D, et al. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection[J]. Optics Letters, 2017, 42(6): 1055-1058.

[11] Zhao Z X, Cheng M F, Luo C K, et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution[J]. Optics Letters, 2019, 44(10): 2605-2608.

[12] Wang L S, Chao M, Wang A B, et al. High-speed physical key distribution based on dispersion-shift-keying chaos synchronization in commonly driven semiconductor lasers without external feedback[J]. Optics Express, 2020, 28(25): 37919-37935.

[13] Huang Y, Zhou P, Li N Q. High-speed secure key distribution based on chaos synchronization in optically pumped QD spin-polarized VCSELs[J]. Optics Express, 2021, 29(13): 19675-19689.

[14] 武超人, 高华, 王龙生, 等. 基于对称相移键控混沌同步的高速密钥安全分发[J]. 中国激光, 2022, 49(4): 0406001.

    Wu C R, Gao H, Wang L S, et al. High-speed secure key distribution based on symmetric phase-shift-keying chaos synchronization[J]. Chinese Journal of Lasers, 2022, 49(4): 0406001.

[15] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

[16] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5198.

[17] Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 2010, 46(10): 1430-1435.

[18] Yoshimura K, Muramatsu J, Davis P, et al. Secure key distribution using correlated randomness in lasers driven by common random light[J]. Physical Review Letters, 2012, 108(7): 070602.

[19] Ke J X, Yi L L, Xia G Q, et al. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate[J]. Optics Letters, 2018, 43(6): 1323-1326.

[20] Gao H, Wang A B, Wang L S, et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry-Perot lasers[J]. Light: Science & Applications, 2021, 10: 172.

[21] Kanakidis D, Bogris A, Argyris A, et al. Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes[J]. Journal of Lightwave Technology, 2004, 22(10): 2256-2263.

[22] Li L F, Wu Z M, Li J, et al. Influences of chromatic dispersion and nonlinearity in fiber on the chaos synchronization[J]. Proceedings of SPIE, 2008, 6839: 183-188.

[23] Yang Z, Yi L L, Ke J X, et al. Chaotic optical communication over 1000 km transmission by coherent detection[J]. Journal of Lightwave Technology, 2020, 38(17): 4648-4655.

[24] Fu Y D, Cheng M F, Shao W D, et al. Analog-digital hybrid chaos-based long-haul coherent optical secure communication[J]. Optics Letters, 2021, 46(7): 1506-1509.

[25] 孙宇川, 毛晓鑫, 王安帮. 开环单向耦合半导体激光器的相位混沌同步[J]. 中国激光, 2020, 47(10): 1001003.

    Sun Y C, Mao X X, Wang A B. Phase chaos synchronization of semiconductor laser with open-loop unidirectional coupling configuration[J]. Chinese Journal of Lasers, 2020, 47(10): 1001003.

[26] Lin F Y, Chao Y K, Wu T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014.

伍玉山, 王俊丽, 毛晓鑫, 王龙生, 贾志伟, 王安帮. 单跨光纤长距离混沌激光保真传输实验研究[J]. 中国激光, 2023, 50(5): 0506002. Yushan Wu, Junli Wang, Xiaoxin Mao, Longsheng Wang, Zhiwei Jia, Anbang Wang. Experiment on Long-Distance Fidelity Transmission of Laser Chaos over Single-Span Optical Fiber[J]. Chinese Journal of Lasers, 2023, 50(5): 0506002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!