High Power Laser Science and Engineering, 2023, 11 (4): 04000e51, Published Online: Jul. 19, 2023  

Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion

Author Affiliations
1 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China
2 Beijing Laser Acceleration Innovation Center, Beijing, China
3 Institute of Guangdong Laser Plasma Technology, Guangzhou, China
Abstract
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.

Zhipeng Liu, Zhusong Mei, Defeng Kong, Zhuo Pan, Shirui Xu, Ying Gao, Yinren Shou, Pengjie Wang, Zhengxuan Cao, Yulan Liang, Ziyang Peng, Jiarui Zhao, Shiyou Chen, Tan Song, Xun Chen, Tianqi Xu, Xueqing Yan, Wenjun Ma. Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion[J]. High Power Laser Science and Engineering, 2023, 11(4): 04000e51.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!