激光与光电子学进展, 2023, 60 (19): 1928001, 网络出版: 2023-09-28  

基于全介质纳米圆柱孔超表面的传感特性研究 下载: 514次

Sensing Characteristics Based on All-Dielectric Nanocylindrical Hole Metasurface
作者单位
1 厦门工学院计算机科学与信息工程学院,福建 厦门 361021
2 华侨大学信息科学与工程学院,福建 厦门 361021
引用该论文

赵静, 王加贤, 高丽贞, 邱伟彬. 基于全介质纳米圆柱孔超表面的传感特性研究[J]. 激光与光电子学进展, 2023, 60(19): 1928001.

Jing Zhao, Jiaxian Wang, Lizhen Gao, Weibin Qiu. Sensing Characteristics Based on All-Dielectric Nanocylindrical Hole Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1928001.

参考文献

[1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[2] Kinsey N, DeVault C, Boltasseva A, et al. Near-zero-index materials for photonics[J]. Nature Reviews Materials, 2019, 4(12): 742-760.

[3] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

[4] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226.

[5] Lu H C, Guo X W, Zhang J, et al. Asymmetric metasurface structures for light absorption enhancement in thin film silicon solar cell[J]. Journal of Optics, 2019, 21(4): 045901.

[6] Chen T, Li S Y, Sun H. Metamaterials application in sensing[J]. Sensors, 2012, 12(3): 2742-2765.

[7] 陈颖, 张敏, 丁志欣, 等. 基于全介质超表面的微流体折射率传感器[J]. 中国激光, 2022, 49(6): 0613001.

    Chen Y, Zhang M, Ding Z X, et al. Microfluidic refractive index sensor based on all-dielectric metasurfaces[J]. Chinese Journal of Lasers, 2022, 49(6): 0613001.

[8] Neira A D, Wurtz G A, Ginzburg P, et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry[J]. Optics Express, 2014, 22(9): 10987-10994.

[9] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

[10] Ding C F, Jiang L K, Wu L, et al. Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials[J]. Optics Communications, 2015, 350: 103-107.

[11] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[12] Bi K, Wang Q M, Xu J C, et al. All-dielectric metamaterial fabrication techniques[J]. Advanced Optical Materials, 2021, 9(1): 2001474.

[13] 包益宁, 刘秀红, 胡劲华, 等. 基于凹型谐振光栅的高性能光学折射率传感器[J]. 中国激光, 2021, 48(9): 0913001.

    Bao Y N, Liu X H, Hu J H, et al. High-performance optical refractive index sensor based on concave resonant grating[J]. Chinese Journal of Lasers, 2021, 48(9): 0913001.

[14] 旷依琴, 李刚, 闫竹青, 等. 工字形椭圆纳米结构的吸收及其折射率敏感特性研究[J]. 光学学报, 2020, 40(14): 1424001.

    Kuang Y Q, Li G, Yan Z Q, et al. Absorption and refractive index sensitivity of the I-shaped elliptical nanostructures[J]. Acta Optica Sinica, 2020, 40(14): 1424001.

[15] Jeong J, Goldflam M D, Campione S, et al. High quality factor toroidal resonances in dielectric metasurfaces[J]. ACS Photonics, 2020, 7(7): 1699-1707.

[16] Zhang Y H, Liang Z Z, Meng D J, et al. All-dielectric refractive index sensor based on Fano resonance with high sensitivity in the mid-infrared region[J]. Results in Physics, 2021, 24: 104129.

[17] Song S Z, Yu S L, Li H, et al. Ultra-high Q-factor toroidal dipole resonance and magnetic dipole quasi-bound state in the continuum in an all-dielectric hollow metasurface[J]. Laser Physics, 2022, 32(2): 025403.

[18] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902.

[19] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1: 16048.

[20] Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903.

[21] Bogdanov A A, Koshelev K L, Kapitanova P V, et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001.

[22] Li S Y, Zhou C B, Liu T T, et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review A, 2019, 100(6): 063803.

[23] Wang W D, Zheng L, Xiong L, et al. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials[J]. OSA Continuum, 2019, 2(10): 2818-2825.

[24] Long X Y, Zhang M, Xie Z W, et al. Sharp Fano resonance induced by all-dielectric asymmetric metasurface[J]. Optics Communications, 2020, 459: 124942.

[25] Peng C Y, Feng C H, Xia J, et al. Near-infrared Fano resonance in asymmetric silicon metagratings[J]. Journal of Optics, 2020, 22(9): 095102.

[26] Kupriianov A S, Xu Y, Sayanskiy A, et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014024.

[27] Wang Y L, Han Z H, Du Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 2021, 10(4): 1295-1307.

[28] Campione S, Liu S, Basilio L I, et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces[J]. ACS Photonics, 2016, 3(12): 2362-2367.

[29] Cui C C, Zhou C B, Yuan S, et al. Multiple Fano resonances in symmetry-breaking silicon metasurface for manipulating light emission[J]. ACS Photonics, 2018, 5(10): 4074-4080.

[30] Yang L, Yu S L, Li H, et al. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces[J]. Optics Express, 2021, 29(10): 14905-14916.

[31] Alaee R, Rockstuhl C, Fernandez-Corbaton I. An electromagnetic multipole expansion beyond the long-wavelength approximation[J]. Optics Communications, 2018, 407: 17-21.

[32] Song D F, Wang H, Deng M, et al. Toroidal dipole Fano resonances supported by lattice-perturbed dielectric nanohole arrays in the near-infrared region[J]. Applied Optics, 2021, 60(12): 3458-3463.

[33] Zhou C B, Liu G Q, Ban G X, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physics Letters, 2018, 112(10): 101904.

[34] Zhong Y J, Du L H, Liu Q, et al. All-silicon terahertz metasurface with sharp Fano resonance and its sensing applications[J]. IEEE Photonics Journal, 2021, 13(2): 4600210.

[35] Maksimov D N, Gerasimov V S, Romano S, et al. Refractive index sensing with optical bound states in the continuum[J]. Optics Express, 2020, 28(26): 38907-38916.

赵静, 王加贤, 高丽贞, 邱伟彬. 基于全介质纳米圆柱孔超表面的传感特性研究[J]. 激光与光电子学进展, 2023, 60(19): 1928001. Jing Zhao, Jiaxian Wang, Lizhen Gao, Weibin Qiu. Sensing Characteristics Based on All-Dielectric Nanocylindrical Hole Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1928001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!