应用激光, 2023, 43 (2): 56, 网络出版: 2023-03-30  

基于激光和表面加工的增减材复合制造

Additive/Subtractive Hybrid Manufacturing Based on Laser and the Surface Processing
张奇 1,2,*沈磊 2何博 1,2
作者单位
1 上海工程技术大学高温合金精密成型研究中心, 上海 201620
2 上海工程技术大学材料工程学院, 上海 201620
摘要
将选择性激光熔化和飞秒激光减材技术相结合已被认为是实现复杂和精细结构近净成形的有效工艺。在SLM工艺中, 由于熔池的运动和熔道的重叠, SLM成形件的表面具有一定的周期性结构, 这对后续飞秒激光减材影响很大。研究首先测量SLM 制备Ti-6Al-4V工件的表面结构, 设计飞秒激光减材试验。通过试验和二维数值模型, 研究了飞秒激光减材加工过程中表面形貌的演变, 预测表面粗糙度值。仿真结果与试验结果非常接近, 误差仅为7.63%。此外, 该模型还用于研究正负离焦位置的表面移动速度和加工深度: 负离焦位置的表面移动速度和加工深度均大于正离焦位置。该关系揭示了飞秒激光减材过程中表面粗糙度降低的机理。
Abstract
The hybrid of laser additive and subtractive manufacturing technolog, which involves selective laser melting (SLM) and femtosecond laser subtractive manufacturing, has been considered as an effective process to achieve near-net-net forming of complex and fine structures. In the SLM process, due to the movement of the molten pool and the overlap of the molten channel, the surface of the SLM formed part has a certain periodic structure, which has a great influence on the subsequent femtosecond laser subtractive manufacturing. In this study, the surface structure of the SLMed Ti-6Al-4V workpiece was measured first, and the femtosecond laser subtractive manufacturing experiment was designed. Through experiments and a two-dimensional numerical model, the evolution of the surface morphology in the process of femtosecond laser subtractive manufacturing is studied, and the surface roughness value is predicted. The simulation results are very close to the experimental results, and the error is only 7.63%. In addition, the model is used to study the surface movement speed and processing depth of the positive/negative defocus position: both the surface movement speed and processing depth of the negative defocus position are greater than the positive defocus position, revealing the mechanism of surface roughness reduction during the femtosecond laser subtraction process.
参考文献

[1] AZAM F I, ABDUL RANI A M, ALTAF K, et al. An In-depth review on direct additive manufacturing of metals[J]. IOP Conference Series: Materials Science and Engineering, 2018, 328: 012005.

[2] ZHANG X, LIANG E Q. Metal additive manufacturing in aircraft: Current application, opportunities and challenges[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012032.

[3] GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.

[4] YE Z P, ZHANG Z J, JIN X, et al. Study of hybrid additive manufacturing based on pulse laser wire depositing and milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5): 2237-2248.

[5] XIE Y P, TONG J B, FU Y Q, et al. Machining scheme of aviation bearing bracket based on additive and subtractive hybrid manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3775-3790.

[6] KOEPKE B G, STOKES R J. A study of grinding damage in magnesium oxide single crystals[J]. Journal of Materials Science, 1970, 5(3): 240-247.

[7] CONWAY J C, KIRCHNER H P. Crack branching as a mechanism of crushing during grinding[J]. Journal of the American Ceramic Society, 1986, 69(8): 603-607.

[8] KIRCHNER H P. Damage penetration at elongated machining grooves in hot-pressed Si3N4[J]. Journal of the American Ceramic Society, 1984, 67(2): 127-132.

[9] KANNATEY-ASIBU E. Principles of laser materials processing[M].s.n.: Principles of Laser Materials Processing, 2015: 431-484.

[10] 高孟秋, 赵宇辉, 赵吉宾, 等. 增减材复合制造技术研究现状与发展[J]. 真空, 2019, 56(6): 68-74.

[11] DU W, BAI Q, ZHANG B. A novel method for additive/subtractive hybrid manufacturing of metallic parts[J]. Procedia Manufacturing, 2016, 5: 1018-1030.

[12] CHEN L, ZHANG P, CHEN J X, et al. Influence of processing parameters on the structure size of microchannel processed by femtosecond laser[J]. Optics & Laser Technology, 2018, 106: 47-51.

[13] DOU J, CUI J L, FANG X Y, et al. Theoretical and experimental study on machining rectangular microgroove of diamond by femtosecond laser[J]. Integrated Ferroelectrics, 2020, 208(1): 104-116.

[14] 袁荷伟, 杨涛. 不同金属的激光精细加工技术实验研究[J]. 应用激光, 2020, 40(6): 1086-1091.

[15] RETHFELD B, IVANOV D S, GARCIA M E, et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 2017, 50(19): 193001.

[16] POVARNITSYN M E, FOKIN V B, LEVASHOV P R. Microscopic and macroscopic modeling of femtosecond laser ablation of metals[J]. Applied Surface Science, 2015, 357: 1150-1156.

[17] 邱一, 刘壮, 李元成, 等. 飞秒激光扫描去除CFRP复合材料的热累积分析[J]. 应用激光, 2021, 41(5): 1004-1010.

[18] PEREZ D, LEWIS L J. Molecular-dynamics study of ablation of solids under femtosecond laser pulses[J]. Physical Review B, 2003, 67(18): 184102.

[19] NEDIALKOV N N, IMAMOVA S E, ATANASOV P A, et al. Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation[J]. Applied Surface Science, 2005, 247(1-4): 243-248.

[20] GANGOPADHYAY U, DHUNGEL S K, BASU P K, et al. Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication[J]. Solar Energy Materials and Solar Cells, 2007, 91(4): 285-289.

[21] DOBRZAN′SKI L A, DRYGAA A, GOOMBEK K, et al. Laser surface treatment of multicrystalline silicon for enhancing optical properties[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 291-296.

[22] 王涛, 王杰, 姚涛, 等. 激光抛光中金属表面的建模及仿真[J]. 激光与红外, 2019, 49(9): 1068-1074.

[23] BUSTILLO A, UKAR E, RODRIGUEZ J J, et al. Modelling of process parameters in laser polishing of steel components using ensembles of regression trees[J]. International Journal of Computer Integrated Manufacturing, 2011, 24(8): 735-747.

[24] ECKERT S, VOLLERTSEN F. Mechanisms and processing limits of surface finish using laser-thermochemical polishing[J]. CIRP Annals, 2018, 67(1): 201-204.

[25] SHARMA S, MANDAL V, RAMAKRISHNA S A, et al. Numerical simulation of melt pool oscillations and protuberance in pulsed laser micro melting of SS304 for surface texturing applications[J]. Journal of Manufacturing Processes, 2019, 39: 282-294.

[26] HU P X, YAO L, ZHANG M J, et al. Femtosecond laser micro-milling dental glass ceramics: An experimental analysis and COMSOL finite element simulation[J]. Ceramics International, 2020, 46(14): 22146-22153.

[27] BELLI R, WENDLER M, DE LIGNY D, et al. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization[J]. Dental Materials, 2017, 33(1): 84-98.

[28] CAO J, GHARGHOURI M A, NASH P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology, 2016, 237: 409-419.

[29] HIRANO K, FABBRO R, MULLER M. Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2011, 44(43): 435402.

张奇, 沈磊, 何博. 基于激光和表面加工的增减材复合制造[J]. 应用激光, 2023, 43(2): 56. Zhang Qi, Shen Lei, He Bo. Additive/Subtractive Hybrid Manufacturing Based on Laser and the Surface Processing[J]. APPLIED LASER, 2023, 43(2): 56.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!