激光技术, 2023, 47 (2): 178, 网络出版: 2023-04-12  

OCT无创血糖检测图像处理最优化方法研究

An optimization method of image processing for OCT non-invasive blood glucose detection
作者单位
1 河北大学 物理科学与技术学院, 保定 071002
2 河北大学 河北省光学感知技术创新中心, 保定 071002
摘要
为了解决不同的光学相干层析(OCT)图像预处理方式对皮肤真皮层散射系数计算影响的问题, 提高无创血糖的测量精确度, 提出了一种对OCT图像数据前期处理的最优化方法。在对采集的3维图像数据进行皮肤表面对齐、3维重建、1维平均处理的基础上, 分析了背景噪声和数据是否归一化对血糖预测精度的影响, 并结合临床实验进行了验证。结果表明, 预测误差较预处理之前减小了18.31%。该研究对于提高基于OCT技术的光学无创血糖测量精度具有重要的参考价值。
Abstract
In order to solve the problem of the influence of different optical coherence tomography (OCT) image preprocessing methods on scattering coefficient calculation in dermis, and to improve the accuracy of noninvasive blood glucose detection, an optimization method of early OCT image data processing was proposed. The 3-D images were first processed by skin surface alignment, 3-D reconstruction and 1-D average, and then the background noise and data normalization effect on the accuracy of blood glucose prediction were analyzed by clinical experiments. The results show that the prediction error decreases by 18.31% compared with that before pretreatment. This study has important reference value for improving the accuracy of optical noninvasive blood glucose detection using OCT.
参考文献

[1] YU Zh F, QIU Q, GUO Y. Glucose concentration detection by dou-ble-modulation optical polarization method [J]. Acta Optica Sinica, 2016, 36(1): 117001(in Chinese).

[2] CHEN W, CHEN Y Q. Fabrication of flexible continuous glucose monitoring sensor by non-patterning method [J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 654-659(in Chinese).

[3] FAN Y Q, GAO F, WANG M, et al. Recent development of wearable microfluidics applied in body fluid testing and drug delivery[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 455-463(in Chinese).

[4] SHOKREKHODAEI M, QUINONES S. Review of non-invasive glucose sensing techniques: Optical, electrical and breath acetone [J]. Sensors, 2020, 20(5): 1251.

[5] LARIN K V, ELEDRISI M S, MOTAMEDI M, et al. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects [J]. Diabetes Care, 2002, 25(12): 2263-2267.

[6] KURANOV R V, SAPOZHNIKOVA V V, PROUGH D S, et al. Prediction capability of optical coherence tomography for blood glucose concentration monitoring [J]. Journal of Diabetes Science and Technology, 2007, 1(1): 470-477.

[7] LARIN K V, MOTAMEDI M, ASHITKOV T V, et al. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: A pilot study [J]. Physics in Medicine and Biology, 2003, 48(10): 1371-1390.

[8] HE R Y, WEI H J, GU H M, et al. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: A pilot study [J]. Journal of Biomedical Optics, 2012, 17(10): 101513.

[9] MARUO K, OOTA T, TSURUGI M, et al. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method: Trial application to patients in an intensive care unit [J]. Applied Spectroscopy, 2006, 60(12): 1423-1431.

[10] RAMASAHAYAM S, ARORA L, CHOWDHURY S R, et al. FPGA based system for blood glucose sensing using photo plethysmography and online motion arifact correction using adaline [C]//Proceedings of the 9th International Conference on Sensing Technology. New York, USA: IEEE, 2015: 1-21.

[11] KATRUI N B, NUR A T, MOHD H H, et al. PLS predictive model for in-vivo non-invasive finger touch blood glucose NIR spectrosensor [C]//Regional Symposium on Micro and Nanoelectronics (RSM). New York, USA: IEEE, 2021: 88-91.

[12] ARIF A Y, NOREHA A M, ZAHIRUL A H M, et al. Continuous non-invasive blood glucose level measurement using near-infrared LEDs [C]//8th International Conference on Computer and Communication Engineering (ICCCE). New York, USA: IEEE, 2021: 32-37.

[13] YU Y, HUANG J P, ZHU J, et al. An accurate noninvasive blood glucose measurement system using portable near-infrared spectrometer and transfer learning framework [J]. IEEE Sensors Journal, 2021, 21(3): 3506-3519.

[14] GOETZ M J, COTE G L, ERCKENS R, et al. Application of a multivariate technique to Raman spectra for quantification of body chemicals [J]. IEEE Transactions on Biomedical Engineering, 1995, 42(7): 728-731.

[15] ENEJDER A M K, SCECINA T G, OH J, et al. Raman spectroscopy for noninvasive glucose measurements [J]. Journal of Biomedical Optics, 2005, 10(3): 031114.

[16] GOLPARVAR A, BOUKHAYMA A, LOAYZA T, et al. Very selective detection of low physiopathological glucose levels by spontaneous Raman spectroscopy with univariate data analysis [J]. Biological Nano Science, 2021, 11: 871-877.

[17] DEEPAK K P, HARDIK L K, PARIDHI S, et al. Overview of Raman spectroscopy: Fundamental to applications [J]. Modern Techniques of Spectroscopy, 2021, 13: 145-184.

[18] GLADKOVA N D, PETROVA G A, NIKULIN N K, et al. In vivo optical coherence tomography imaging of human skin: Norm and pathology [J]. Skin Research and Technology, 2000, 6(1): 6-16.

[19] DREZEK R, DUNN A, RICHARDS K R. Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements [J]. Applied Optics, 1999, 38(16): 3651-3661.

[20] SU Y, YAO X S, LI Z, et al. Measurement of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: A pilot study[J]. Biomedical Optics Express, 2015, 6(2): 500-513.

[21] SU Y, YAO X S, WEI C J, et al. Determination of the pressure coefficient of optical attenuation in differernt layers of in-vivo human skins with optical coherence tomography[J]. IEEE Photonics Journal, 2016, 8(1): 3800110.

[22] SOLANKI J, SEN P, ANDREWS J T, et al. Blood glucose monitoring in human subjects using optical coherence tomography [J]. Journal of Optics, 2012, 41(3): 127-133.

[23] KURANOV R V, SPAOZHNIKOVA V V, PROUGH D S, et al. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography[J]. Physics in Medicine and Biology, 2006, 51(16): 3885-3900.

[24] YASUAKI H, YOSHIAKI Y. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography [J]. Optics Express, 2006, 14(5): 1862-1877.

[25] BHANDARI A, HAMRE B, FRETTE B, et al. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices[J]. Optics Express, 2011, 19(15): 14549-14567.

[26] SU Y, MENG Zh, WANG L Zh, et al. Correlation analysis and ca-libration of noninvasive blood glucose monitoring in vivo with optical coherence tomography [J]. Chinese Journal of Lasers, 2014, 41(7): 0704002(in Chinese).

[27] SU Y, MENG Zh, YU H M, et al. Study on blood glucose lag time in noninvasive measurement using optical coherence tomography [J]. Laser Technology, 2015, 39(1): 19-22(in Chinese).

刘逸飞, 苏亚, 姚晓天, 崔省伟, 杨丽君, 周聪聪, 何松. OCT无创血糖检测图像处理最优化方法研究[J]. 激光技术, 2023, 47(2): 178. LIU Yifei, SU Ya, YAO Xiaotian, CUI Shengwei, YANG Lijun, ZHOU Congcong, HE Song. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. Laser Technology, 2023, 47(2): 178.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!