光学学报, 2023, 43 (12): 1228002, 网络出版: 2023-04-25  

2021年春季葫芦岛海陆风特征及对臭氧污染影响亮点文章

Characteristics of Sea-Land Breeze in Huludao during Spring, 2021 and Its Impacts on Ozone Pollution
作者单位
1 中国海洋大学信息科学与工程学部海洋技术学院,山东 青岛 266100
2 青岛海洋科学与技术试点国家实验室区域海洋动力学与数值模拟功能实验室,山东 青岛 266237
3 辽宁省气象装备保障中心,辽宁 沈阳 110166
摘要
作为一种中尺度天气现象,海陆风通过对污染物的累积与输送影响沿海地区的空气质量。2021年3月到4月,相干多普勒测风激光雷达系统架设在辽宁省葫芦岛市,开展风场观测实验。结合自动气象站的常规气象参数,识别得到海陆风日11天。结果表明:海风平均登陆时间为8:30;14:00~17:00海风发展较盛,平均风速超过7.0 ms-1;10:00~16:00海风发展高度为0.3~0.5 km,18:00后保持在0.9 km以上;海风主风向为东,随时间顺时针偏转;海风阶段,高空有北、西北方向的返海陆风。环境监测站数据表明,海陆风日白天O3浓度上升速度快,峰值浓度更高。以4月4日为例,利用中尺度天气预报(WRF)模式分析南北向垂直剖面海风环流,结果表明:海风、陆风交汇会造成污染物聚集,海风登陆形成的冷气团有利于污染物向下输送;海陆风环流对污染物有循环累积作用,计算得4月4日葫芦岛水平风局地回流指数仅为0.049,表明空间内风场输送能力弱,污染物不易扩散。
Abstract
Objective

Sea-land breeze (SLB) circulation is a mesoscale process induced by the thermal difference between land and sea. After sunrise, the land surface is heated faster than the sea surface, which leads to a pressure gradient force and the air flow from sea to land to form a sea breeze. At night, there is a contrary thermal difference, and the air flows from land to sea to form a land breeze. SLB circulation plays an important role in the generation and transportation of air pollutants, which impacts the weather, climate, and air quality of coastal areas. Lying on the south of Liaodong Bay, Huludao is easily influenced by SLB. In recent years, regional pollution characterized by ozone (O3) and particles have become increasingly serious under the impact of chemical industry production and automobile exhaust emissions in Huludao. SLB circulation will change the temperature and humidity structure in the coastal boundary layer which determines the photochemical reaction conditions. Meanwhile, it impacts the transport of pollutants in coastal areas. Influenced by local circulation, solar radiation, precursor concentration, and other factors, the O3 concentration on SLB days is more complicated, which has important research significance. Coherent Doppler wind lidar (CDWL) has a high spatiotemporal resolution and continuous observational ability. It can obtain the complete SLB and detailed structure of the atmospheric boundary layer, which is of great significance for understanding the horizontal and vertical transport characteristics of pollutants during SLB circulation.

Methods

From March 1st to April 30th in 2021, wind profile observation was carried out with CDWL in Juehua Island, Huludao, Liaoning (120.78° E, 40.48° N). The obtained meteorological parameters include wind speed/direction and temperature in the Huludao area and O3 concentrations measured by ground-based instruments during observation. Three main factors should be considered in SLB identification: 1. large-scale background wind field; 2. temperature difference between sea and land; 3. near-surface wind direction change. We identified the SLB days during observation depending on these three conditions and the coastline direction in the Huludao area. We gathered the temporal and spatial distributions of SLB circulation in Huludao, including arrival time, prevailing speed, main direction, and the height of the sea breeze. The impact of SLB on O3 concentration was analyzed, with the ground air quality monitoring data taken into account. Weather Research and Forecasting (WRF) modeling was performed to investigate SLB and its impact on O3 concentration.

Results and Discussions

A total of 11 SLB days were identified with the data from CDWL and automatic meteorological stations in Huludao, accounting for 18% of the observation days. The results show that the sea breeze started at 08:30 averagely. During 14:00—17:00, it developed stronger, and the average speed exceeded 7.0 m·s-1. The height of the sea breeze was 0.3-0.5 km during 10:00—16:00 and reached above 0.9 km after 18:00. As the main direction was east, the sea breeze showed a tendency to deflect in a clockwise direction over time (Figs. 2, 3, and 4). The WRF model presents the sea breeze circulation in the vertical section on April 4th. Sea breeze moved to the Huludao area at 10:00, and a strong wind convergence zone formed along the coastal line at 12:00 (Fig. 5). Pollutants accumulated at the intersection of sea and land breezes and transported to the ground surface by cold air sinking at the sea breeze head simultaneously. The data from the environmental monitoring station shows that O3 concentration rose faster and had a higher peak on SLB days (Fig. 6). The surface wind speed on SLB days was lower than on non-SLB days, and the difference was more than 2 m·s-1 at the same time point (Fig. 7). Land breeze carried O3 from inland to sea at night, and the sea breeze during daytime blew pollutants back to the land, causing the cyclic accumulation of pollutants. With April 4th as an example, the O3 concentration rose faster after the sea breeze arrived at Huludao and peaked at 106 μg·m-3 (Fig. 9). The local recirculation index of horizontal wind in Huludao was only 0.049 on April 4th (Fig. 10), indicating that the transmission capacity of wind field was weak, and thus pollutants were not easy to spread.

Conclusions

According to the criteria at home and abroad, we identified the SLB days during spring, 2021 in Huludao with the wind data from CDWL and ground stations. In addition, we analyzed the temporal and spatial distributions of SLB circulation in Huludao, including the arrival time, prevailing speed, main direction, and the height of the sea breeze. The result shows that sea breeze forms later at a high altitude than on the surface, and the wind direction changes clockwise. The mesoscale WRF model was used to analyze the development of the sea breeze circulation on April 4th, which proved the results observed by CDWL. The O3 concentration rises faster and has a higher peak on SLB days. The study case shows that the local recirculation of horizontal wind under SLB is low, indicating that it is not conducive to the spread of pollutants. Pollutants will recirculate to the inland area after moving away from the coast during the shift of sea breeze and land breeze, which causes the cyclic accumulation of pollutants.

1 引言

海陆风(SLB)是海陆间热力性质差异引起的一种中尺度大气物理现象,在垂直空间上表现为上下方向相反的环流运动,当近地面空气从海洋流向陆地时为海风,而空气从陆地流向海洋时为陆风1-2。海陆风特殊的气象条件与局地环流结构对沿海地区大气污染物的输送和扩散具有重要影响3-4。近年来,学者们广泛关注海陆风对颗粒物和O3污染的影响机理。海陆风最早的观测局限于近地面层,20世纪60—70年代开始,随着观测技术的发展,风廓线仪、探空气球、气象探测飞机等航空器,声雷达、多普勒雷达等遥感设备应用于海陆风的观测,可以观测到海风和高空返回流5-7

激光雷达具有高时空分辨率,有助于获得海陆风的垂直精细结构。Nakane等8利用激光雷达的后向散射数据观测到了完整的海风锋,包括形状及湍流特征。Kolev等9利用激光雷达观测结果对黑海沿岸地区海风循环过程和昼夜演变进行了详细分析。许满满等10利用测风激光雷达、温度脉动仪在深圳沿海地区的观测结果,研究发现海陆风条件下湍流动能耗散率与湍流强度呈线性关系,较陆风条件,湍流在海风条件下发展得更为充分。此外,激光雷达技术已广泛应用于大气成分探测方面,利用拉曼散射激光雷达、偏振激光雷达、差分吸收激光雷达等可实现对温度、湿度、云、气溶胶、O3NO2SO2CO2垂直分布的全时段实时连续探测,还可以获得边界层高度信息11。王馨琦等12利用差分吸收O3激光雷达对广州市对流层O3垂直结构进行长期连续观测,研究出了广州市O3垂直结构的日变化特征,分析了相同高度颗粒物消光系数与O3浓度的相关性。

海陆风环流会造成沿海地区污染物的循环累积,加剧空气质量的污染。林长城等13对福建沿海地区海陆风的观测研究表明,海陆风连续出现会导致PM10浓度增加,且海陆风转换期间PM10易聚集升高。Cheng14在台湾沿海区域的研究表明,春季海风环流与背景风的共同作用是台中盆地南部发生高浓度O3事件的主导因素。Clappier等15模拟研究了海陆风对雅典地区产生高浓度O3的非线性过程,指出海陆风导致污染物再循环是引起该变化的重要原因。除了海风对O3及其前体物的输送,海陆风期间特殊的气象条件会影响光化学强度,进而改变O3浓度。何礼16利用地面站数据结合数值模式研究上海地区海陆风对O3污染的影响,发现有海陆风时由于热力内边界层的存在,以及光照好等条件,O3浓度日变化自海风登陆后逐渐高于同一时刻无海陆风日的浓度,且浓度峰值被抬高。

受到局地环流及太阳辐射、前体物浓度等多种因素的影响,海陆风期间O3浓度的变化较为复杂,具有重要的研究意义。葫芦岛南临辽东湾,海岸线复杂,为海陆风多发地带。本文基于激光雷达风场观测数据,结合自动气象站资料与污染物浓度数据,研究葫芦岛地区海陆风特征及其对O3污染的影响,为当地污染防治提供理论依据。

2 资料与方法

2.1 站点与数据

2021年3月1日至4月30日,Wind3D 6000型相干多普勒测风激光雷达(CDWL)系统架设在辽宁省葫芦岛市觉华岛西南侧(120.78° E,40.48° N),开展三维风场观测,现场照片如图1所示。系统由中国海洋大学与青岛镭测创芯科技有限公司联合研制,表1给出了其性能技术指标。结合葫芦岛自动气象站和环境监测站,获取逐小时风速、风向、温度和臭氧质量浓度资料,对当地海陆风进行识别,研究其时空规律和海陆风期间O3浓度变化趋势。在海陆风日的判定中,观测场地700 hPa逐小时风速、风向及附近海域的海表温度(SST)数据来自欧洲中期天气预报中心第五代再分析资料(ERA5),水平分辨率为0.25°×0.25°17

图 1. 观测场地与测风激光雷达系统照片

Fig. 1. Experimental site and wind lidar system photo

下载图片 查看所有图片

表 1. Wind3D 6000型相干多普勒测风激光雷达的技术性能指标

Table 1. Technical parameters of Wind3D 6000 coherent Doppler wind lidar

Technical specificationContent
Wavelength /μm1.5
Data refresh rate /Hz1-10
Speed measurement accuracy /(ms-10.1
Scan servo accuracy /(°)0.1
Range resolution /m30
Scan modeDoppler beam swinging(DBS)
Radial detection range /m45-6000
Weight /kg<90

查看所有表

2.2 海陆风日判定

对葫芦岛地区海陆风的判定主要考虑大尺度背景风场、海陆温差、近地面风向转换3项18。大尺度背景风场对海陆风的形成有重要影响,判定时首先要筛选出利于海陆风生成的背景环流形势,本文利用700 hPa高空风场资料对背景风场进行限制19。海陆温差是海风建立的先决条件之一,不同地区采取的阈值不同,本文设定海陆风日发生时海陆温差应大于1.5 ℃,以确保较大的海陆热力差异20-21。近地面风向转换是海陆风的基本特征,根据葫芦岛地区海岸线走向,划分海风范围ENE~SSW、陆风范围WSW~NNE,平行于海岸线的NE和SW为沿岸流方向22。具体判定方法如下:

1)海风时段13:00—20:00(local standard time,LST),海风至少出现4 h;

2)陆风时段01:00—08:00(LST),陆风至少出现4 h;

3)一天内,700 hPa地转风风向改变量小于90°,风速改变量小于6 ms-1

4)海陆风日Tland-Tsea>1.5 ℃,其中Tland为葫芦岛自动气象站当天日出到日落的平均温度,Tsea为最邻近该站点的SST日均值。

2.3 WRF模式参数配置

由美国国家大气研究中心(NCAR)和国家环境预报中心(NCEP)等机构开发的中尺度天气预报(WRF)模式是模拟城市尺度到中尺度范围气象状况的有效工具23。为了研究区域内海陆风的发展过程,利用WRF模式对2021年4月4日的海陆风进行模拟。模式采用三层嵌套,水平分辨率分别为27 km、9 km、3 km,垂直方向设置为34层,为更精细地模拟海风结构,将离地表2 km内空间加密至21层。WRF模式及参数化方案设置如表2所示。

表 2. WRF配置采用的物理参数化方案

Table 2. Physical parameterization scheme employed for WRF configurations

Configuration nameSpecific parameter setting
Boundary layerYSU24
Cumulus parameterization schemeKain-Fritsch(new Eta)25
MicrophysicsLin26
Longwave radiationRRTM27
Shortwave radiationDudhia28
Land surfaceNoah29

查看所有表

3 分析与讨论

3.1 海陆风时空特征分析

3.1.1 基于CDWL的海风统计特征

基于CDWL水平风资料结合葫芦岛自动气象站数据,识别出2021年3月到4月期间辽宁省葫芦岛地区海陆风日11天,占观测日期的18%。图2为观测期间海陆风日海风风速与发展高度日变化。图2(a)显示:海风风速整体上呈先增大后减小的日变化趋势,平均登陆时间为08:30,初始风速为3.1 ms-1;下午14:00—17:00,海风平均风速超过7.0 ms-1,该阶段海陆温差增大,海陆热力性质差异的影响愈加明显30,因此海风发展更盛。4月8日海风最大风速出现较早且持续较长时间,12:40风速达9 ms-1,此后直到16:30始终保持在9~10 ms-1。3月9日和3月17日海风风速较低,最大值不超过7.0 ms-1,这是初春日出较晚,太阳辐射较弱,海风环流能量来源不足导致的31图2(b)显示:海风发展高度随时间不断增加;10:00—16:00发展速度较缓,平均高度保持在0.3~0.5 km;17:00—18:00发展速度加快,夜间,高度始终保持在0.9 km以上。3月9日和4月8日,海风发展较高,其中3月9日海风顶超过1.6 km,4月8日18:00—22:00海风高度均在1.1 km以上。4月14日海风发展较低,海风顶高不足0.6 km。海风发展高度受高空天气形势影响,尤其以850 hPa形势的影响最为显著2。3月9日渤海区域850 hPa形势较弱,仅有一条等高线经过,故海风得以发展较高;4月14日,850 hPa环渤海一带位于槽后区域,等高线密集,海风发展受到抑制。

图 2. 海陆风日海风风速与发展高度日变化。(a)风速;(b)发展高度

Fig. 2. Diurnal variation of sea breeze speed and height in the SLB days. (a) Speed; (b) height

下载图片 查看所有图片

图3显示上午09:00—12:00葫芦岛地区沿岸流过渡至海风,集中在东北偏东方向;13:00至夜间海风风向覆盖东、南至西南方向,主风向为东。海风风速在不同方向上分布较均匀,沿岸流附近风速较大,可达12 ms-1以上。

图 3. 海陆风日海风风玫瑰图。(a)9:00—12:00;(b)13:00—16:00;(c)17:00—20:00;(d)21:00—24:00

Fig. 3. Wind rose of sea breeze in the SLB day. (a) 9:00—12:00; (b) 13:00—16:00; (c) 17:00—20:00; (d) 21:00—24:00

下载图片 查看所有图片

3.1.2 海陆风垂直结构与发展个例

利用激光雷达可以获得海风在垂直方向的精细结构。图4为海陆风日2021年4月4日和2021年4月14日CDWL观测的10 min平均风速和风向结果。

图 4. 海陆风日测风激光雷达观测水平风。(a)2021年4月4日;(b)2021年4月14日

Fig. 4. Horizontal wind observed by wind lidar in the SLB days. (a) 2021-04-04; (b) 2021-04-14

下载图片 查看所有图片

4月4日凌晨至10:00为陆风控制阶段,初始高度接近1.3 km,08:00左右下降至0.6 km。陆风风速随高度增加而增加,0.3 km高度内不超过6 ms-1,陆风顶处可达14 ms-1。陆风以北向为主,00:00—02:00和05:00—06:00观测到东北方向的沿岸流。09:00—10:00低空陆风过渡为海风,海风初始风向为东,随时间顺时针偏转。14:00前,0.5 km内海风风速为2~6 ms-1。海风发展过程中高度不断增加,13:00达0.5 km,15:00发展至最高,接近1 km。相比于近地面,高空海风形成有所滞后,持续时间较短,这是海陆下垫面对空气的加热作用从近地面开始并逐渐向上传播导致的32。海风阶段,高空仍可观测到北向陆风,形成海风环流。16:00左右,海风转为西南方向的沿岸流,0.7 km内风速为8~12 ms-1,0.8~1 km内为2~6 ms-1

4月14日凌晨至05:00葫芦岛低空受西向陆风控制,风速不超过8 ms-1,0.3 km以上风向为西北偏西,风速为10~14 ms-1,05:00后0.5 km以上高空受西北陆风主导,风速超过12 ms-1。低空海风于08:20登陆,初始方向为东,下午15:00发展至东南方向,风速达12 ms-1。海风阶段,12:00以前0.5~1 km高度内有北、西北方向的陆风回流,13:00后以西南方向的沿岸流主导,风速可达20 ms-1。春季我国北方地区主要受来自西伯利亚及蒙古地区的季风影响,导致偏北陆风更盛,因此这两天海风发展均弱于陆风,风速也更低。

以4月4日为例,利用WRF模式分析此次海风发展过程,选取激光雷达观测位置所在经度120.78° E作葫芦岛及附近海域南北向剖面,所跨纬度范围为40.3° N~41.0° N。如图5所示,4月4日08:00,沿剖面750 m内经向风(V)风速值为负,说明葫芦岛区域受北向陆风控制;10:00,随着海陆热力性质差异增大,陆海温差超过1 ℃,40.3° N~40.7° N范围内经向风方向转为南,表明来自低纬区域的海风从葫芦岛沿岸登陆;12:00,海风覆盖区域经向风的风速增加至5~8 ms-1,海风发展更盛,海风头高度达750 m;14:00,海风深入内陆,形成明显的海风环流33

图 5. 2021年4月4日沿120.78° E的经向风(V)与温度垂直分布。(a)08:00;(b)10:00;(c)12:00;(d)14:00

Fig. 5. Temperature and V vertical distribution along 120.78° E on April 4th, 2021. (a) 08:00; (b) 10:00; (c) 12:00; (d) 14:00

下载图片 查看所有图片

3.2 海陆风对O3污染的影响

3.2.1 海陆风日O3浓度日变化特征

海陆风日与非海陆风日葫芦岛地区O3质量浓度日变化均呈单峰单谷的特征,如图6所示。谷值出现在上午07:00,峰值分别出现在下午15:00和16:00,这是前体物浓度、光化学反应强度、大气扩散的共同作用导致的34-36。凌晨至日出前后,持续陆风将城市污染物输送到海洋37,导致该阶段海陆风日的O3质量浓度更低;07:00后,随着太阳辐射增强,O3质量浓度开始上升,其中海陆风日的上升速度更快,质量浓度于中午11:00后超过非海陆风日。海陆风日O3的峰值质量浓度为115.1 μgm-3,比非海陆风日高21 μgm-3,且达到峰值的时间滞后约1 h。

图 6. 葫芦岛平均O3质量浓度日变化

Fig. 6. Diurnal variation of average mass concentration of O3 in Huludao

下载图片 查看所有图片

海风登陆时,来自海洋的湿冷气流与内陆较为干热的气流相遇形成热内边界层,污染物受到其内部湍流的作用被带至地面38,出现局地O3质量浓度高值。对于海陆风日,陆风阶段城市污染物被输送至海洋上空,海风登陆后污染物被海风再次带回,造成污染物的循环累积39图7显示海陆风日近地面风速全天低于非海陆风日,同一时刻风速差异可达2 ms-1以上,近地面风速较低导致海陆风期间大气扩散能力差,同样不利于污染物的扩散。

图 7. 葫芦岛平均风速日变化

Fig. 7. Diurnal variation of the average wind speed in Huludao

下载图片 查看所有图片

为了区分太阳辐射与海陆风环流对O3质量浓度日变化的影响,由ERA5设备获取葫芦岛地区2021年3月至4月总云量数据,时间分辨率为1 h,水平分辨率为0.25°×0.25°。依据气象行业标准40:云量在0%~10%为晴天,10%~30%为少云,30%~70%为多云,大于70%为阴天,统计不同天气条件下海陆风期间O3质量浓度日变化。如图8所示,不同天气条件下海风环流均会使O3质量浓度在白天上升更快,带来更高的峰值质量浓度,进一步证实了海风对污染物的循环累积作用。与晴天少云相比,多云阴天期间O3质量浓度达到峰值的时间有所滞后,这是阴天时地面辐射对大气加热过程较慢导致的。

图 8. 不同天气条件下葫芦岛平均O3质量浓度日变化。(a)晴天少云;(b)多云阴天

Fig. 8. Diurnal variation of the average mass concentration of O3 in Huludao at different weather conditions. (a) Sunny; (b) cloudy

下载图片 查看所有图片

3.2.2 海陆风的局地再循环作用

污染物在空间内的传输与分布受局地天气系统(如海陆风)的影响。以海陆风日2021年4月4日为例,分析海陆风发生时局地风场对当地O3质量浓度的影响。当天葫芦岛地区云覆盖率全天低于2%,晴朗无云,较好的太阳辐射条件有利于光化学作用发生,促进O3的生成。图9给出了当天葫芦岛地区O3质量浓度、NO2质量浓度、地面温度与水平风日变化。结果显示,NO2质量浓度变化趋势与O3相反,夜间滴定作用(NO+O3=NO2+O2)对O3有一定的消耗36-37。06:00—12:00,随着太阳辐射的增强,气温持续上升,最高为17.2 ℃;12:00—13:00,葫芦岛地区偏北陆风转为东南方向海风,海风入境带来气温的显著下降,同时O3质量浓度上升幅度加快,这主要是海风对O3的局地回流堆积作用引起的;15:00,臭氧质量浓度达到峰值106 μgm-3,夜间21:00仍保持在90 μgm-3以上。

图 9. 海陆风日葫芦岛地面站观测结果。(a)O3质量浓度,NO2质量浓度,地面温度;(b)水平风

Fig. 9. Observation of Huludao ground station in the SLB day. (a) O3 mass concentration, NO2 mass concentration, land temperature; (b) horizontal wind

下载图片 查看所有图片

局地回流描述了空间内污染被风场输送出去后再次输送回来的现象41,局地回流指数(R)由Allwine等42提出来,表征风场的有效输运能力,计算公式为

R=i=124ui2+i=124vi2i=124ui2+vi2

式中:i(1i24)为相应数据时刻;uivi分别为水平风的纬向、经向分量。采用的数据间隔为1 h。图10显示海陆风日2021-04-04的R值较小,仅为0.049,说明风场的回流堆积效果明显,污染物有效扩散区域小41-42。这也在一定程度上解释了当天下午至夜间O3质量浓度始终较高的原因。图5(c)中WRF模拟4月4日12:00海风环流南北向垂直剖面显示,葫芦岛区域南风、北风交汇,强风汇聚带的形成有利于O3的聚集43;在海风的作用下,葫芦岛区域上空500~1000 m在剖面内形成冷中心,冷空气下沉将高空O3带至地面,进一步导致地面O3质量浓度的增加44

图 10. 海陆风日葫芦岛水平风局地回流,L为位移,S为路程

Fig. 10. Horizontal wind local recirculation of Huludao in the SLB day, L is transport distance, S is wind run

下载图片 查看所有图片

4 结论

基于相干多普勒测风激光雷达,在葫芦岛开展风场测量实验,结合地面观测数据,对海陆风时空特征及其对当地O3污染的影响进行研究。对观测期间海风到达时刻、盛行风速、海风发展高度、主风向等要素进行分析,总结了葫芦岛地区春季海陆风日的发展规律,与前人研究结果较为一致。利用激光雷达高时空分辨率数据,对海风环流的垂直结构与发展过程进行了更加精细的观测。利用中尺度WRF模式对海风个例的演化过程进行分析,结果与激光雷达观测结果具有较好的一致性。个例结果表明,海陆风期间局地回流指数较小,不利于污染物扩散,海风登陆带来的湿冷气流对污染物有向下输送的作用,导致近地面污染。

海陆风作为一种中尺度局地环流现象对当地大气环境与污染输运有重要影响,基于观测资料与模式结果研究海陆风期间O3输送过程对当地污染防治具有重要意义。沿海地区地形复杂,目前开展单站测量后仍然无法研究海陆风期间污染过程。除局地风场作用,海陆风期间太阳辐射条件和前体物浓度对O3质量浓度的影响仍需要进一步研究。

参考文献

[1] 寿绍文, 励申申, 寿亦萱, 等. 中尺度大气动力学[M]. 北京: 气象出版社, 1993: 27-76.

    ShouS W, LiS S. Shou Y X,et al. Mesoscale atmospheric dynamics[M]. Beijing: China Meteorological Press, 1993: 27-76.

[2] 于恩洪, 陈彬, 白玉荣. 渤海湾西部海陆风的空间结构[J]. 气象学报, 1987, 45(3): 379-381.

    Yu E H, Chen B, Bai Y R. Land and sea breezes in the western Bohai Wan[J]. Acta Meteorologica Sinica, 1987, 45(3): 379-381.

[3] Boucouvala D, Bornstein R. Analysis of transport patterns during an SCOS97-NARSTO episode[J]. Atmospheric Environment, 2003, 37(2): 73-94.

[4] 杨洋. 局地环流对京津冀地区大气污染影响研究[D]. 南京: 南京信息工程大学, 2014.

    YangY. Effects of local circulation on atmospheric pollutants in Beijing-Tianjin-Hebei region[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.

[5] 寿绍文, 励申申, 姚秀萍. 中尺度气象学[M]. 2版. 北京: 气象出版社, 2009: 28-29.

    ShouS W, LiS S, YaoX P. Mesoscale meteorology[M]. 2nd ed. Beijing: China Meteorological Press, 2009: 28-29.

[6] Finkele K, Hacker J M, Kraus H, et al. A complete sea-breeze circulation cell derived from aircraft observations[J]. Boundary-Layer Meteorology, 1995, 73(3): 299-317.

[7] Kraus H, Hacker J M, Hartmann J. An observational aircraft-based study of sea-breeze frontogenesis[J]. Boundary-Layer Meteorology, 1990, 53(3): 223-265.

[8] Nakane H, Sasano Y. Structure of a sea-breeze front revealed by scanning lidar observation[J]. Journal of the Meteorological Society of Japan Ser II, 1986, 64(5): 787-792.

[9] Kolev I, Parvanov O, Kaprielov B, et al. Lidar observations of sea-breeze and land-breeze aerosol structure on the Black Sea[J]. Journal of Applied Meteorology, 1998, 37(10): 982-995.

[10] 许满满, 邵士勇, 刘庆, 等. 复杂地形下海陆风对大气湍流的影响[J]. 光学学报, 2020, 40(12): 1201002.

    Xu M M, Shao S Y, Liu Q, et al. Influences of sea and land winds on atmospheric turbulence under complex terrain[J]. Acta Optica Sinica, 2020, 40(12): 1201002.

[11] 刘文清. “双碳”目标下大气环境光学监测技术发展机遇[J]. 光学学报, 2022, 42(6): 0600001.

    Liu W Q. Opportunities and challenges for development of atmospheric environmental optics monitoring technique under “double carbon” goal[J]. Acta Optica Sinica, 2022, 42(6): 0600001.

[12] 王馨琦, 张天舒, 裴成磊, 等. 差分吸收激光雷达监测广州市臭氧垂直分布特征[J]. 中国激光, 2019, 46(12): 1211003.

    Wang X Q, Zhang T S, Pei C L, et al. Monitoring of vertical distribution of ozone using differential absorption lidar in Guangzhou[J]. Chinese Journal of Lasers, 2019, 46(12): 1211003.

[13] 林长城, 吴滨, 陈彬彬, 等. 海峡西岸海陆风特征及对大气污染物浓度影响[J]. 环境科学与技术, 2015, 38(S1): 56-60, 99.

    Lin C C, Wu B, Chen B B, et al. Characteristics of sea-land breeze and its impact on the concentration of air pollutants in the west bank of Taiwan strait[J]. Environmental Science & Technology, 2015, 38(S1): 56-60, 99.

[14] Cheng W L. Ozone distribution in coastal central Taiwan under sea-breeze conditions[J]. Atmospheric Environment, 2002, 36(21): 3445-3459.

[15] Clappier A, Martilli A, Grossi P, et al. Effect of sea breeze on air pollution in the greater Athens area. part I: numerical simulations and field observations[J]. Journal of Applied Meteorology, 2000, 39(4): 546-562.

[16] 何礼. 上海海陆风对臭氧污染的影响[D]. 上海: 华东师范大学, 2018.

    HeL. Sea-land breeze and its impact on ozone pollution in Shanghai[D]. Shanghai: East China Normal University, 2018.

[17] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.

[18] 高佳琦, 苗峻峰, 许启慧. 海陆风识别方法研究进展[J]. 气象科技, 2013, 41(1): 97-102.

    Gao J Q, Miao J F, Xu Q H. Research on progresses in methods for identifying sea and land breezes[J]. Meteorological Science and Technology, 2013, 41(1): 97-102.

[19] Borne K, Chen D, Nunez M. A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast[J]. International Journal of Climatology, 1998, 18(8): 901-914.

[20] 吴增茂. 渤海南岸海陆风个例分析及判别[J]. 海洋与湖沼, 1989, 20(1): 87-91.

    Wu Z M. Case analysis and discrimination of sea/land breeze at the southern shore of Bohai Sea[J]. Oceanologia et Limnologia Sinica, 1989, 20(1): 87-91.

[21] Furberg M, Steyn D G, Baldi M. The climatology of sea breezes on Sardinia[J]. International Journal of Climatology, 2002, 22(8): 917-932.

[22] 张振维, 李东红, 王瑛. 辽东湾西部地区海陆风初探[J]. 气象科学, 1991, 11(2): 205-213.

    Zhang Z W, Li D H, Wang Y. Study on sea breeze circulation in the west area of Liaodong Bay[J]. Scientia Meteorologica Sinica, 1991, 11(2): 205-213.

[23] Papanastasiou D K, Melas D, Lissaridis I. Study of wind field under sea breeze conditions; an application of WRF model[J]. Atmospheric Research, 2010, 98(1): 102-117.

[24] Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341.

[25] Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Journal of the Atmospheric Sciences, 1990, 47(23): 2784-2802.

[26] Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1065-1092.

[27] Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682.

[28] Chen F, Dudhia J. Coupling an advanced land surface hydrology model with the Penn state NCAR MM5 modeling system. part I: model description and implementation[J]. Monthly Weather Review, 2001, 129(4): 569-585.

[29] DudhiaJ. A multilayer soil temperature model for MM5[EB/OL]. [2022-06-05]. https://www.yumpu.com/en/document/view/6709865/a-multi-layer-soil-temperature-model-for-mm5-mmm.

[30] 邢秀芹. 胶东半岛地区海陆风特征[J]. 气象, 1997, 23(5): 54-57.

    Xing X Q. Characteristics of land sea breeze in peninsula area on Bohai Bay[J]. Meteorological Monthly, 1997, 23(5): 54-57.

[31] 王玉国, 吴增茂, 常志清. 辽东湾西岸海陆风特征分析[J]. 海洋预报, 2004, 21(3): 57-63.

    Wang Y G, Wu Z M, Chang Z Q. Statistic characteristics of sea-land breeze in west coast of Liao Dong Bay[J]. Marine Forecasts, 2004, 21(3): 57-63.

[32] 程志强. 海陆风环流的基本模式[J]. 热带海洋, 1983, 2(4): 296-301.

    Cheng Z Q. A basic model of the sea-land breezes circulation[J]. Tropic Oceanology, 1983, 2(4): 296-301.

[33] Liu J X, Song X Q, Long W R, et al. Structure analysis of the sea breeze based on Doppler lidar and its impact on pollutants[J]. Remote Sensing, 2022, 14(2): 324.

[34] Wang Y H, Hu B, Ji D S, et al. Characteristics of ozone and its precursors in Northern China: a comparative study of three sites[J]. Atmospheric Research, 2013, 132: 450-459.

[35] 王占山, 李云婷, 陈添, 等. 北京市臭氧的时空分布特征[J]. 环境科学, 2014, 35(12): 4446-4453.

    Wang Z S, Li Y T, Chen T, et al. Temporal and spatial distribution characteristics of ozone in Beijing[J]. Environmental Science, 2014, 35(12): 4446-4453.

[36] 严晓瑜, 缑晓辉, 杨婧, 等. 中国典型城市臭氧变化特征及其与气象条件的关系[J]. 高原气象, 2020, 39(2): 416-430.

    Yan X Y, Gou X H, Yang J, et al. The variety of ozone and its relationship with meteorological conditions in typical cities in China[J]. Plateau Meteorology, 2020, 39(2): 416-430.

[37] Oh I B, Kim Y K, Lee H W, et al. An observational and numerical study of the effects of the late sea breeze on ozone distributions in the Busan metropolitan area, Korea[J]. Atmospheric Environment, 2006, 40(7): 1284-1298.

[38] Stauffer R M, Thompson A M, Martins D K, et al. Bay breeze influence on surface ozone at Edgewood, MD during July 2011[J]. Journal of Atmospheric Chemistry, 2015, 72(3): 335-353.

[39] Darby L S, McKeen S A, Senff C J, et al. Ozone differences between near-coastal and offshore sites in New England: role of meteorology[J]. Journal of Geophysical Research, 2007, 112(D16): D16S91.

[40] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 短期天气预报: GB/T 21984—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Short-range weather forecast: GB/T 21984—2017[S]. Beijing: Standards Press of China, 2017.

[41] Li W, Wang Y X, Bernier C, et al. Identification of sea breeze recirculation and its effects on ozone in Houston, TX, during DISCOVER-AQ 2013[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22): 033165.

[42] Allwine K J, Whiteman C D. Single-station integral measures of atmospheric stagnation, recirculation and ventilation[J]. Atmospheric Environment, 1994, 28(4): 713-721.

[43] Mangia C, Schipa I, Tanzarella A, et al. A numerical study of the effect of sea breeze circulation on photochemical pollution over a highly industrialized peninsula[J]. Meteorological Applications, 2010, 17(1): 19-31.

[44] Feng Z W, Jin M H, Zhang F Z, et al. Effects of ground-level ozone(O3) pollution on the yields of rice and winter wheat in Yangtze River Delta[J]. Journal of Environmental Sciences, 2003, 15(3): 360-362.

杨雅雯, 宋小全, 廉文超, 康博识, 苗传海. 2021年春季葫芦岛海陆风特征及对臭氧污染影响[J]. 光学学报, 2023, 43(12): 1228002. Yawen Yang, Xiaoquan Song, Wenchao Lian, Boshi Kang, Chuanhai Miao. Characteristics of Sea-Land Breeze in Huludao during Spring, 2021 and Its Impacts on Ozone Pollution[J]. Acta Optica Sinica, 2023, 43(12): 1228002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!