无机材料学报, 2022, 37 (12): 1267, 网络出版: 2023-01-12  

硅酸镱环境障涂层抗熔盐腐蚀行为与机制研究

Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating
作者单位
摘要
稀土硅酸盐环境障涂层(EBC)是应用于新一代高推重比航空发动机热端部件的重要材料, 但其在高温熔盐环境的腐蚀行为与机制尚不明晰。本工作采用真空等离子喷涂技术(VPS)制备了Yb2SiO5/Yb2Si2O7/Si环境障涂层, 并研究了该涂层体系在900 ℃、Na2SO4+25% NaCl(质量分数)熔盐环境中的腐蚀行为与机制。研究发现, 所制备的Yb2SiO5/Yb2Si2O7/Si涂层体系结构致密, 各层之间结合良好; 涂层体系腐蚀240 h, 熔盐组分渗透Yb2SiO5涂层, 在Yb2Si2O7中间层发生富集。涂层中Yb2SiO5相具有良好的稳定性, Yb2O3第二相与熔盐发生反应, 且随腐蚀时间延长, Yb2O3含量减少。中间层Yb2Si2O7相与熔盐反应生成磷灰石相NaYb9Si6O26和钠硅酸盐, 并产生Cl2和SO2等挥发性物质, 从而影响服役寿命。硅黏结层中未发现熔盐渗透现象, 保持完整。该涂层体系具有良好的抗熔盐腐蚀性能。
Abstract
Environmental barrier coating (EBC) is essential for protection of ceramic matrix composite hot-sections in future gas turbine engines with high thrust-to-weight ratio. Rare-earth silicates, such as Yb2SiO5 and Yb2Si2O7, have been developed for potential application as EBC. However, the corrosion behaviors and mechanisms of EBC in molten salt environment such as Na2SO4 at high temperature are not clear. In this work, the Yb2SiO5/Yb2Si2O7/Si coating was prepared by vacuum plasma spraying (VPS). The molten salt (Na2SO4+25% NaCl, in mass) corrosion behaviors and mechanisms of the coating at 900 ℃ for 60-240 h were investigated. Results showed that the Yb2SiO5/Yb2Si2O7/Si coating exhibited dense structure with good bonding between the triple ceramic layers. The molten salt of Na2SO4+25% NaCl penetrated the Yb2SiO5 top layer and enriched in the Yb2Si2O7 interlayer, while the interfacial bonding between the coating and substrate still remained good after corrosion for 240 h. The Yb2SiO5 phase in the top layer exhibited good stability, while the second phase of the Yb2O3 reacted with molten salt. The content of the Yb2O3 decreased with the increase of corrosion time. The Yb2Si2O7 phase in the interlayer reacted with molten salt to form apatite phase of NaYb9Si6O26 and sodium silicate as well as volatile species such as Cl2 and SO2, which might shorten the service life of the coating. Moreover, there was almost no molten salt in the silicon bond layer, which remained intact. The Yb2SiO5/Yb2Si2O7/Si coating exhibited good resistance to molten salt corrosion.

硅基非氧化物陶瓷及其复合材料具有低密度、高比强度、耐高温、抗氧化和优异的高温力学性能等特点, 可部分取代高温合金应用于航空发动机的热端部件[1]。在干燥环境中, 硅基非氧化物陶瓷材料与氧气发生反应生成SiO2保护层, 可以避免其继续氧化。然而, 航空发动机的服役环境包含多种腐蚀介质(如高温水蒸气、熔盐等), 会与SiO2保护层反应生成挥发性的Si(OH)4, 导致材料性能迅速退化[2-3]。环境障涂层(Environmental Barrier Coating, EBC)涂覆于硅基非氧化物陶瓷材料表面, 能够将基体与发动机中的腐蚀性介质隔离开来, 从而有效提高材料在发动机环境中的性能稳定性[4]

稀土硅酸盐材料具有良好的相稳定性、优异的耐蚀性能、与基体匹配的热膨胀系数等特点, 是最具应用潜力的环境障涂层材料。王京阳等[5]结合第一性原理和实验表征系统研究了不同稀土硅酸盐块体材料的力学与热学性能。王一光等[6-7]针对稀土硅酸盐块体材料的耐蚀性能开展了相关研究工作, 发现X2-RE2SiO5比X1-RE2SiO5具有更好的耐蚀性能。近年来, 通过高熵化设计优化稀土硅酸盐材料的性能也引起了研究者的关注[8-9]。这些工作为EBC的选材和结构优化设计提供了可靠的理论依据。稀土硅酸盐用作涂层材料时, 其结构、性能与块体材料相比会产生差异。本研究团队[10-15]针对不同稀土硅酸盐涂层材料的显微结构、热学力学性能和耐蚀性能开展了系列研究, 发现稀土硅酸盐涂层在制备过程中易形成孔隙和裂纹等缺陷, 并分解产生氧化物第二相, 从而影响涂层的抗热震和耐蚀性能。为提高EBC的服役性能, 研究者[16-17]开发了稀土硅酸盐/Si和稀土硅酸盐/Mullite/Si等涂层体系。张小锋等[18-21]采用等离子喷涂-物理气相沉积技术(Plasma Spray-Physical Vapor Deposition, PS-PVD)制备了Yb2SiO5/Mullite/Si环境障涂层体系, 探讨了涂层沉积机制及其在高温环境下的显微结构演化过程, 并提出了通过表面镀Al来提高EBC耐蚀性的新方法。Hu等[22]设计了Lu2Si2O7- Lu2SiO5/Mullite双涂层体系, 该体系可有效提高服役温度(1450 ℃), 但热循环过程中因产生贯穿裂纹而失效。本研究团队[10,23]设计并制备了Yb2SiO5/ Yb2Si2O7/Si涂层体系, 发现该涂层体系各层之间化学相容性好, 具有良好的抗热震性能、抗裂纹扩展性能和抗CMAS(CaO-MgO-Al2O3- SiO2)腐蚀性能。

涡轮发动机在服役过程中会面临Na2SO4、NaCl等盐污染物引起的热腐蚀[24-26]。Na2SO4主要由矿物燃料中硫的氧化产物(SO2/SO3)与大气中的NaCl气溶胶反应而形成。如果涡轮发动机在海洋环境中运行, NaCl会与发动机燃料中的SO3及水蒸气发生反应生成Na2SO4[27]。此外, 吸入的NaCl与Na2SO4的共晶混合物熔点较低(~620 ℃), 也会导致材料在低温下发生腐蚀[28]。EBC中硅黏结层的氧化产物SiO2与Na2SO4发生反应生成Na2SiO3和SO3, 进一步加剧了涂层性能的衰退[29]。因此, Na2SO4、NaCl等沉积物对EBC的腐蚀是值得引起重视的问题。

Sun等[30]研究了γ-Y2Si2O7的Na2SO4腐蚀行为和机制, 发现其在950 ℃环境下腐蚀20 h生成条形的磷灰石相NaY9Si6O26和富硅层, 腐蚀产物在高温下易熔融形成液相, 可填充涂层内部孔隙, 有利于延缓腐蚀。Fan等[31]发现在950 ℃、Na2SO4+V2O5熔盐环境下, γ-Y2Si2O7腐蚀20 h会生成NaY9Si6O26相。Opila等[27]对Yb2Si2O7/Si涂层体系的Na2SO4腐蚀行为研究发现, 经1316 ℃腐蚀不足1 h, Yb2Si2O7全部反应; 涂层体系失效的原因是热生长氧化物(Thermally Grown Oxide, TGO)的生成以及无定型硅酸钠的渗透与迁移。目前未发现文献报道Yb2O3-SiO2-Na2O的相图, 但Yb2O3-SiO2-Na2O化合物的合成研究已证明存在钠磷灰石相NaYb9Si6O26以及Na3YbSi2O7和NaYbSiO4[32-33]

Yb2SiO5/Yb2Si2O7/Si涂层体系具有良好的高温性能, 但其在Na2SO4热腐蚀环境中的腐蚀行为和机制尚无系统研究。本工作以Yb2SiO5/Yb2Si2O7/Si涂层体系为研究对象, 探究该体系在900 ℃、Na2SO4+25% NaCl熔盐环境中的腐蚀行为, 明确不同腐蚀时间的涂层体系中各层的显微结构变化及失效机制。这些结果将为稀土硅酸盐环境障涂层的设计和性能优化提供科学依据。

1 实验方法

1.1 涂层制备

采用固相反应法合成Yb2SiO5和Yb2Si2O7, 喷涂粉体的具体合成方法参考团队前期工作[12,15]。以尺寸为ϕ25.4 mm×3 mm的SiC陶瓷作为基体, 采用真空等离子喷涂技术(VPS, A-2000; Oerlikon Metco, Switzerland)分别将Si、Yb2Si2O7和Yb2SiO5粉体依次喷涂在基体上, 最终获得Yb2SiO5/Yb2Si2O7/Si涂层体系。制备的样品用无水乙醇超声清洗3次, 烘干、备用。真空等离子喷涂参数见表1

表 1. 真空等离子喷涂参数

Table 1. Operating parameters used for vacuum plasma spraying

Yb2SiO5Yb2Si2O7Si
Primary Ar/(L·min-1)465352
Secondary H2/(L·min-1)141013
Carrier Ar/(L·min-1)2.32.32.0
Spray distance/mm220220290

查看所有表

1.2 腐蚀实验

研究采用马弗炉进行热腐蚀实验。模拟的熔盐腐蚀环境为900 ℃空气环境, 熔盐成分为Na2SO4+ 25% NaCl。首先以去离子水为分散剂, 将熔盐粉体均匀分散, 涂覆于涂层表面。随后在120 ℃干燥箱中干燥15 min, 反复涂覆, 使表面熔盐浓度达6 mg/cm2。将样品放入马弗炉中, 设置并启动升温程序, 以10 ℃/min升温至900 ℃并保温10 h, 然后取出样品并在其表面重新涂覆6 mg/cm2的熔盐粉体, 此为一个循环。观察样品形貌, 实验循环进行至涂层开始出现剥落为止。

1.3 样品表征

采用光学显微镜(OM, E3CMOS, 宁波舜宇仪器有限公司, 中国)观察样品实验前后的宏观形貌。采用X射线衍射仪(XRD, RAX-10, Rigaku, 日本)表征不同腐蚀时间的涂层物相。根据衍射峰强度, 通过RIR值法计算腐蚀后涂层表面的物相含量(Jade 6.5)。采用场发射扫描电子显微镜(SEM, Magellan 400, FEI, 美国)分析涂层的表面和截面等微观结构。分析截面样品前, 需要进行金相抛光处理, 后经无水乙醇超声清洗并烘干。采用电子顺磁共振仪(EPR, A300-10, Bruker, 德国)表征涂层中的氧空位浓度。

2 结果与讨论

2.1 喷涂态涂层显微结构分析

图1(a)为Yb2SiO5粉体和喷涂态涂层的XRD图谱, 与粉体相比, 涂层中除 Yb2SiO5相外, 还出现了Yb2O3相和非晶相。Yb2SiO5粉体在温度远高于其熔点的等离子火焰中易发生分解, 分解产物氧化硅挥发, Yb2O3留在涂层中, 使得涂层的物相组成不同于粉体[4]。非晶相是由喷涂过程中熔融粒子迅速冷却造成的。涂层表面由熔融良好的粒子充分铺展而成, 具有等离子喷涂涂层的典型形貌, 含有少量微裂纹和气孔(图1(b))。通过截面形貌(图1(c))可以看出, 涂层体系包含明显的Si、Yb2Si2O7和Yb2SiO5三层结构, Yb2Si2O7-Si和Yb2SiO5-Yb2Si2O7界面均结合良好, 涂层内部存在少量气孔和微裂纹等缺陷(图1(d, e))。

图 1. 喷涂态Yb2SiO5/Yb2Si2O7/Si涂层的XRD图谱和显微结构

Fig. 1. XRD patterns and SEM morphologies of as-sprayed Yb2SiO5/Yb2Si2O7/Si coating

下载图片 查看所有图片

2.2 熔盐腐蚀行为研究

图2是Yb2SiO5/Yb2Si2O7/Si涂层经900 ℃熔盐腐蚀不同循环次数的宏观形貌。可以发现, 经6个和10个腐蚀循环后, 涂层保持完整; 直至24个腐蚀循环后(240 h), 涂层开始出现剥落现象。

图 2. Yb2SiO5/Yb2Si2O7/Si涂层熔盐腐蚀不同时间的宏观形貌

Fig. 2. Macro-photographs of Yb2SiO5/Yb2Si2O7/Si coating after molten salt corrosion for different time

下载图片 查看所有图片

Yb2SiO5/Yb2Si2O7/Si涂层经不同时间腐蚀后的XRD图谱如图3所示。可以发现, 经腐蚀后, 涂层表面物相仍由Yb2SiO5相和Yb2O3相组成。通过RIR值法计算涂层中的Yb2O3第二相含量, 经60、100和240 h腐蚀, Yb2O3的质量分数分别为36.15%、30.65%和25.59%。可见, 随着循环次数增加, Yb2O3含量逐渐减少。

图 3. Yb2SiO5/Yb2Si2O7/Si涂层经熔盐腐蚀不同时间的XRD图谱

Fig. 3. XRD patterns of Yb2SiO5/Yb2Si2O7/Si coating after molten salt corrosion for different time

下载图片 查看所有图片

图4是Yb2SiO5/Yb2Si2O7/Si涂层体系经熔盐腐蚀不同时间后的表面显微结构图。可以发现, 腐蚀60和100 h后涂层表面主要包括白色衬度的粗糙颗粒和黑色衬度的光滑区域; 腐蚀240 h后涂层表面黑色衬度的光滑区域消失殆尽。高倍形貌显示, 黑色衬度的光滑区域存在较多裂纹。EDS结果表明, 涂层表面黑色衬度区域由S、Na、O三种元素组成, 推测该物相为残余熔盐(腐蚀物), 白色衬度区域为Yb2O3或Yb2O3+Yb2SiO5的混合物。随腐蚀时间延长, 表面残余熔盐减少, 这是腐蚀过程中熔盐逐渐渗透至涂层内部导致的。EDS结果显示, 随腐蚀时间延长, 白色衬度区域的硅含量呈增加趋势, 说明Yb2SiO5相逐渐增多, 而Yb2O3相逐渐减少。

图 4. Yb2SiO5/Yb2Si2O7/Si涂层经熔盐腐蚀不同时间的低倍和高倍形貌及其不同位置元素分析

Fig. 4. Surface morphologies of Yb2SiO5/Yb2Si2O7/Si coating after molten salt corrosion for different time and correponding EDS analyses of different areas

下载图片 查看所有图片

Yb2SiO5/Yb2Si2O7/Si涂层经900 ℃熔盐腐蚀不同时间后Yb2SiO5层的截面形貌如图5所示。可以看出, 腐蚀实验后涂层内部仍较为致密, 随着腐蚀循环次数增加, 涂层出现纵向裂纹, 涂层变得疏松多孔。纵向裂纹和疏松多孔结构为腐蚀介质提供通道, 进一步加剧渗透。从EDS结果可以看出, 经过6次循环后, Na元素主要分布于涂层上部; 随着腐蚀时间延长, 在孔隙处存在Na元素富集现象, 进一步说明熔盐发生渗透。

图 5. Yb2SiO5 面层经熔盐腐蚀不同时间的截面形貌及其元素面分析

Fig. 5. Cross-sectional morphologies and corresponding element analyses of Yb2SiO5 top layer after molten salt corrosion for different time

下载图片 查看所有图片

图6是Yb2SiO5/Yb2Si2O7/Si涂层体系经900 ℃熔盐腐蚀60、100和240 h的截面形貌及EDS元素面分析。可以看出, 经不同时间腐蚀后, 涂层体系各层之间、涂层与基体之间均结合良好, 少量贯穿Yb2SiO5涂层的裂纹终止于Yb2Si2O7中间层。由EDS分析结果可知, Yb2Si2O7中间层存在熔盐渗透和Na元素富集现象。随腐蚀时间延长, 渗透区面积逐渐增大。腐蚀60 h后, Si黏结层上方未发现明显二氧化硅TGO层; 腐蚀100 h后, Si黏结层上方形成不连续TGO层; 当腐蚀时间延长至240 h, Si黏结层上方形成连续TGO层。在硅黏结层内部未发现Na元素分布, 说明熔盐并未渗透到黏结层。

图 6. Yb2SiO5/Yb2Si2O7/Si涂层经熔盐腐蚀不同时间的截面形貌及其EDS元素面分析

Fig. 6. Cross-sectional morphologies and corresponding EDS element mappings of Yb2SiO5/Yb2Si2O7/Si EBCs after molten salt corrosion for different time

下载图片 查看所有图片

图7是经熔盐腐蚀60、100和240 h的涂层体系Yb2Si2O7中间层渗透区高倍形貌及EDS元素面分析。结合EDS分析结果可以发现, 渗透区域主要包含三种不同衬度区。灰白色衬度区包括两种形态:条状颗粒(点1、5、9, 原子比Na : Yb : Si≈1 : 9 : 6)推测为稀土钠磷灰石, 其化学式为NaYb9Si6O26; 无规则灰白色衬度区(点2、6、10, 原子比Yb : Si≈ 2 : 1)为Yb2SiO5。灰色衬度区(点3、7、11, 原子比Yb : Si≈1 : 1)为Yb2Si2O7。黑色衬度的区(点4、8、12)则是由Na、Si、Yb、O元素组成, Na元素存在富集现象, 可能是Na-Yb-Si-O化合物。通过对比图7(a~c)条状颗粒发现, 随着腐蚀时间延长, 稀土钠磷灰石产物体积逐渐增大。

图 7. 经Na2SO4+25% NaCl熔盐腐蚀不同时间的涂层体系Yb2Si2O7中间层渗透区高倍截面形貌及EDS元素面分析

Fig. 7. High-magnification cross-sectional morphologies and corresponding EDS mappings of infiltration zone in Yb2Si2O7 interlayer after molten salt corrosion for different time

下载图片 查看所有图片

表 2. 图7中标记区域的EDS元素组成/%(原子分数)

Table 2. EDS elemental compositions of the marked regions in Fig. 7/%(in atom)

PositionYbSiNaO
121.6914.271.9862.06
224.9112.57-62.52
318.2918.09-63.62
410.1518.672.4158.77
522.5013.751.6762.08
624.9212.57-62.51
718.0318.31-63.66
88.9519.2513.2558.55
922.9313.202.0461.82
1024.4512.96-62.59
1117.8218.04-63.25
128.9119.2113.3958.49

查看所有表

2.3 熔盐腐蚀机制分析

图8是在900 ℃环境Yb2SiO5/Yb2Si2O7/Si涂层经Na2SO4+25% NaCl熔盐腐蚀的示意图。结合涂层熔盐腐蚀行为研究结果, 推测熔盐与涂层发生如下反应[30,34 -35]

Yb2O3(s) + 3Na2SO4(l) = Yb2(SO4)3(s) + 3Na2O(s) 11Yb2Si2O7(s) + 2Na2SO4(l) = 2NaYb9Si6O26(s) + SiO2(s) + Na2O·2Yb2O3·9SiO2(l) + 2SO2(g) + O2(g) 2NaCl(l) + 1/2O2(g) = Na2O(s) + Cl2(g)

图 8. Yb2SiO5/Yb2Si2O7/Si涂层经900 ℃、Na2SO4+25% NaCl熔盐腐蚀示意图

Fig. 8. Schematic diagrams of Yb2SiO5/Yb2Si2O7/Si coating under Na2SO4+25% NaCl molten salt corrosion at 900 ℃

下载图片 查看所有图片

随着腐蚀时间延长, Yb2SiO5涂层中Yb2O3含量逐渐减少, 这主要由于Yb2O3与Na2SO4反应生成了Yb2(SO4)3(反应式(1))。而Yb2(SO4)3易从涂层表面脱落, 因此XRD中没有检测出该物相[35]。当熔盐渗透至中间层时, 与Yb2Si2O7反应生成条状稀土钠磷灰石NaYb9Si6O26(反应式(2)), 同时在Na元素富集的黑色衬度区可能形成由Yb2O3-SiO2-Na2O组成的化合物。随着腐蚀循环次数增加, 在热应力的作用下, 表层涂层出现贯穿裂纹, 熔盐进一步渗透, 且渗透区增大, 渗透深度增加, 促使生成更多的NaYb9Si6O26。NaCl中的Cl-会与O2发生反应生成Cl2, 同时Na2SO4与硅酸盐发生反应生成SO2等挥发性气体, 随着腐蚀时间延长, 生成的气体更多, 从而导致涂层变得疏松多孔, 这为腐蚀介质提供通道, 加速了涂层失效。

通过EPR测试Yb2SiO5和Yb2Si2O7涂层的氧空位浓度, 如图9所示, 发现Yb2Si2O7涂层的氧空位浓度高于Yb2SiO5涂层。氧空位浓度越高, 涂层的点缺陷数量越大, 这会造成涂层材料的耐蚀性能较差。

图 9. Yb2SiO5和Yb2Si2O7涂层的EPR图谱

Fig. 9. EPR spectra of Yb2SiO5 and Yb2Si2O7 coating

下载图片 查看所有图片

3 结论

研究采用真空等离子喷涂技术制备了Yb2SiO5/Yb2Si2O7/Si涂层体系, 研究了涂层在900 ℃空气环境中的熔盐(Na2SO4+25% NaCl)腐蚀行为与机制, 得出以下结论:

1)Yb2SiO5/Yb2Si2O7/Si涂层结构较为致密, 各层之间结合良好。腐蚀过程中, Na2SO4+25% NaCl熔盐渗透多层体系中的Yb2SiO5涂层, 在Yb2Si2O7中间层发生富集, 但并未渗透至硅黏结层。结果显示该涂层体系具有良好耐熔盐腐蚀性能。

2)Yb2SiO5涂层中Yb2O3第二相会与熔盐发生反应生成Yb2(SO4)3和Na2O。随着腐蚀时间延长, Yb2O3含量减少。Yb2Si2O7与Na2SO4反应生成NaYb9Si6O26磷灰石相, 并产生Cl2、SO2等气体, 导致涂层孔隙增加, 从而影响其服役寿命。

参考文献

[1] PADTUREN P.Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8):804-809. 10.1038/nmat468727443899

[2] LEEK N, FOXD S, ELDRIDGEJ I, et al.Advanced environmental barrier coatings developed for SiC/SiC composite vanes (2022-06-01). https://ntrs.nasa.gov/search.jsp?R=20050214693https://ntrs.nasa.gov/search.jsp?R=20050214693.

[3] EATONH E, LINSEYG D.Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002, 22(14/15):2741-2747. 10.1016/S0955-2219(02)00141-3https://linkinghub.elsevier.com/retrieve/pii/S0955221902001413

[4] RICHARDSB T, WADLEYH N G.Plasma spray deposition of tri-layer environmental barrier coatings. Journal of the European Ceramic Society, 2014, 34(12):3069-3083. 10.1016/j.jeurceramsoc.2014.04.027https://linkinghub.elsevier.com/retrieve/pii/S0955221914002301

[5] TIANZ L, ZHENGL Y, WANGJ M, et al.Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE=Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1):189-202. 10.1016/j.jeurceramsoc.2015.09.013https://linkinghub.elsevier.com/retrieve/pii/S0955221915301321

[6] LIUJ, ZHANGL T, LIUQ M, et al.Calcium-magnesium- aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 ℃. Journal of the European Ceramic Society, 2013, 33(15/16):3419-3428. 10.1016/j.jeurceramsoc.2013.05.030https://linkinghub.elsevier.com/retrieve/pii/S0955221913002884

[7] JIANGF R, CHENGL F, WANGY G.Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceramics International, 2017, 43(12):9019-9023. 10.1016/j.ceramint.2017.04.045https://linkinghub.elsevier.com/retrieve/pii/S0272884217306508

[8] DONGY, RENK, LUY H, et al.High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019, 39(7):2574-2579. 10.1016/j.jeurceramsoc.2019.02.022https://linkinghub.elsevier.com/retrieve/pii/S0955221919301062

[9] SUNL C, RENX M, DUT F, et al.High entropy engineering: new strategy for the critical property optimizations of rare earth silicates. Journal of Inorganic Materials, 2021, 36(4):339-346. 10.15541/jim20200611Environmental barrier coatings (EBCs) have been developed to improve the durability of SiCf/SiC CMC components against harsh combustion environment. Among the most promising EBC candidates, rare-earth (RE) silicates attract attentions for their low thermal expansion coefficient, excellent high temperature water vaper and CMAS corrosion resistance, and good thermal and chemical compatibility with silicon-based ceramics and composites. Herein, we reviewed the optimizations of critical key properties of rare-earth silicates through strategic high entropy design to modify the current performance deficiencies of rare-earth silicates like thermal properties (coefficient of thermal expansion and thermal conductivity), CMAS corrosion resistance and high temperature phase stability. The present advancements demonstrate the merits of high entropy engineering for advanced EBCs for the improvement of crucial properties in engine applications.

[10] ZHONGX, NIUY R, LIH, et al.Thermal shock resistance of tri-layer Yb2SiO5/Yb2Si2O7/Si coating for SiC and SiC-matrix composites. Journal of the American Ceramic Society, 2018, 101(10):4743-4752. 10.1111/jace.15713https://onlinelibrary.wiley.com/doi/10.1111/jace.15713

[11] ZHUT, NIUY R, ZHONGX, et al.Influence of phase composition on microstructure and thermal properties of ytterbium silicate coatings deposited by atmospheric plasma spray. Journal of the European Ceramic Society, 2018, 38(11):3974-3985. 10.1016/j.jeurceramsoc.2018.04.047https://linkinghub.elsevier.com/retrieve/pii/S0955221918302590

[12] ZHONGX, NIUY R, LIHONG, et al.Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. Journal of the American Ceramic Society, 2017, 100(5):1896-1906. 10.1111/jace.14690https://onlinelibrary.wiley.com/doi/10.1111/jace.14690

[13] ZHONGX, WANGY W, NIUY R, et al.Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium-magnesium-alumino-silicate melts. Corrosion Science, 2021, 191:109718. 10.1016/j.corsci.2021.109718https://linkinghub.elsevier.com/retrieve/pii/S0010938X21004844

[14] WANGY W, NIUY R, ZHONGX, et al.Water vapor corrosion behaviors of plasma sprayed RE2SiO5 (RE=Gd, Y, Er) coatings. Corrosion Science, 2020, 167:108529. 10.1016/j.corsci.2020.108529https://linkinghub.elsevier.com/retrieve/pii/S0010938X19321602

[15] ZHONGX, ZHUT, NIUY R, et al.Effect of microstructure evolution and crystal structure on thermal properties for plasma- sprayed RE2SiO5 (RE=Gd, Y, Er) environmental barrier coatings. Journal of Materials Science & Technology, 2021, 85:141-151.

[16] LIG, QINL, CAOX Q, et al.Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs. Ceramics International, 2022, 48(5):7082-7092. 10.1016/j.ceramint.2021.11.267https://linkinghub.elsevier.com/retrieve/pii/S0272884221036907

[17] LEEK N, FOXD S, BANSALN P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. Journal of the European Ceramic Society, 2005, 25(10):1705-1715. 10.1016/j.jeurceramsoc.2004.12.013https://linkinghub.elsevier.com/retrieve/pii/S095522190400531X

[18] ZHANGX F, ZHOUK S, LIUM, et al.Preparation of Si/mullite/ Yb2SiO5 environment barrier coating (EBC) by plasma spray- physical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018, 33(3):325-330. 10.15541/jim20170194http://www.jim.org.cn/EN/10.15541/jim20170194

[19] WANGC, ZHANGX F, ZHOUK S, et al.Nano-composite structured environmental barrier coat-ings prepared by plasma spray- physical vapor deposition and their thermal cycle performance. Rare Metal Materials and Engineering, 2019, 48(11):3455-3462

[20] ZHANGX F, SONGJ B, DENGZ Q, et al.Interface evolution of Si/Mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020, 40(4):1478-1487. 10.1016/j.jeurceramsoc.2019.10.062https://linkinghub.elsevier.com/retrieve/pii/S0955221919307447

[21] ZHANGX F, ZHOUK S, LIUM, et al.Oxidation and thermal shock resistant properties of Al-modified environmental barrier coating on SiCf/SiC composites. Ceramics International, 2017, 43(16):13075-13082. 10.1016/j.ceramint.2017.06.167https://linkinghub.elsevier.com/retrieve/pii/S0272884217313810

[22] HUX X, XUF F, LIK W, et al.Water vapor corrosion behavior and failure mechanism of plasma sprayed mullite/Lu2Si2O7-Lu2SiO5 coatings. Ceramics International, 2018, 44(12):14177-14185. 10.1016/j.ceramint.2018.05.020https://linkinghub.elsevier.com/retrieve/pii/S0272884218311507

[23] LIUP P, ZHONGX, NIUY R, et al.Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022: 110069.

[24] WUS J, CHENGL F, ZHANGL T, et al.Corrosion of SiC/SiC composite in Na2SO4 vapor environments from 1000 ℃ to 1500 ℃. Composites Part A: Applied Science and Manufacturing, 2006, 37(9):1396-1401. 10.1016/j.compositesa.2005.07.010https://linkinghub.elsevier.com/retrieve/pii/S1359835X05003386

[25] KOSIENIAKE, BIESIADAK, KACZOROWSKIJ, et al.Corrosion failures in gas turbine hot components. Journal of Failure Analysis and Prevention, 2012, 12(3):330-337. 10.1007/s11668-012-9571-3http://link.springer.com/10.1007/s11668-012-9571-3

[26] JACOBSONN S.Kinetics and mechanism of corrosion of SiC by molten salts. Journal of the American Ceramic Society, 1986, 69(1):74-82. 10.1111/j.1151-2916.1986.tb04698.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1986.tb04698.x

[27] HERWEYERL A, OPILAE J.High-temperature Na2SO4 interaction with air plasma sprayed Yb2Si2O7+Si EBC system: Topcoat behavior. Journal of the American Ceramic Society, 2021, 104(12):6496-6507. 10.1111/jace.17999https://onlinelibrary.wiley.com/doi/10.1111/jace.17999

[28] LIL, LUJ, LIUX Z, et al.AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4+25% NaCl at 900 ℃. Corrosion Science, 2021, 187:109479. 10.1016/j.corsci.2021.109479https://linkinghub.elsevier.com/retrieve/pii/S0010938X21002456

[29] HAGANJ M, OPILAE J.High-temperature Na2SO4 deposit- assisted corrosion of silicon carbide-I: temperature and time dependence. Journal of the American Ceramic Society, 2015, 98(4):1275-1284. 10.1111/jace.13409https://onlinelibrary.wiley.com/doi/10.1111/jace.13409

[30] SUNZ Q, LIM S, ZHOUY C.Kinetics and mechanism of hot corrosion of γ-Y2Si2O7 in thin-film Na2SO4 molten salt. Journal of the American Ceramic Society, 2008, 91(7):2236-2242. 10.1111/j.1551-2916.2008.02439.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2008.02439.x

[31] FANX Y, SUNR J, DONGJ, et al.Effects of sintering additives on hot corrosion behavior of γ-Y2Si2O7 ceramics in Na2SO4+V2O5 molten salt. Journal of the European Ceramic Society, 2021, 41(1):517-525. 10.1016/j.jeurceramsoc.2020.08.068https://linkinghub.elsevier.com/retrieve/pii/S0955221920307111

[32] LATSHAWA M, YEONJ, SMITHM D, et al.Synthesis, structure, and polymorphism of A3LnSi2O7 (A=Na, K; Ln=Sm, Ho, Yb). Journal of Solid State Chemistry, 2016, 235:100-106. 10.1016/j.jssc.2015.12.013https://linkinghub.elsevier.com/retrieve/pii/S0022459615302784

[33] LATSHAWA M, WILKINSB O, CHANCEW M, et al.Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4 (OH) (RE=Sc, Yb) and NaRESiO4 (RE=La, Yb). Solid State Sciences, 2016, 51:59-65. 10.1016/j.solidstatesciences.2015.11.009https://linkinghub.elsevier.com/retrieve/pii/S1293255815300856

[34] JONNALAGADDAK P, MAHADES, KRAMERS, et al.Failure of multilayer suspension plasma sprayed thermal barrier coatings in the presence of Na2SO4 and NaCl at 900 ℃. Journal of Thermal Spray Technology, 2019, 28(1):212-222. 10.1007/s11666-018-0780-5https://doi.org/10.1007/s11666-018-0780-5

[35] 蒋凤瑞.B1-xSxAS及稀土硅酸盐环境障碍涂层热腐蚀性能研究. 西安: 西北工业大学博士学位论文, 2017.

刘平平, 钟鑫, 张乐, 李红, 牛亚然, 张翔宇, 李其连, 郑学斌. 硅酸镱环境障涂层抗熔盐腐蚀行为与机制研究[J]. 无机材料学报, 2022, 37(12): 1267. Pingping LIU, Xin ZHONG, Le ZHANG, Hong LI, Yaran NIU, Xiangyu ZHANG, Qilian LI, Xuebin ZHENG. Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating[J]. Journal of Inorganic Materials, 2022, 37(12): 1267.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!