人工晶体学报, 2023, 52 (3): 485, 网络出版: 2023-04-13  


Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials
1 福建省计量科学研究院, 国家光伏产业计量测试中心, 福州 350003
2 福建江夏学院, 钙钛矿绿色应用福建省高校重点实验室, 福州 350108
为进一步降低钙钛矿太阳能电池(PSCs)制备成本, 提高其稳定性, 需要可低温制备、稳定和高效的无机空穴传输层。本文利用太阳能电池模拟软件SCAPS-1D对基于CuS空穴传输层的钙钛矿电池进行电学仿真, 探讨了吸光层的厚度和缺陷态密度、界面层缺陷态密度以及空穴传输层电子亲和能对太阳能电池性能的影响。从模拟结果可知, 当钙钛矿薄膜的厚度为400 nm, 吸光层和界面的缺陷态密度小于10-16 cm-3, 且CuS的电子亲和能为3.3 eV时, 电池性能较佳。优化后的电池性能如下: 开路电压(Voc)为1.07 V, 短路电流(Jsc) 为22.72 mA/cm2, 填充因子(FF)为0.85, 光电转换效率(PCE)为20.64%。本研究为基于CuS的高效钙钛矿太阳能电池的实验制备提供了理论上的指导。
Perovskite solar cells (PSCs) have achieved significant progress in recent years. However, to further reduce the cost and improve stability of PSCs, development of low-temperature processed, stable and efficient inorganic hole-transport layer is mandatory. In this work, inorganic CuS based PSCs were simulated with the simulation software SCAPS-1D. The effects of thickness and defect density of the absorber, defect densities of the interfaces, and electron affinity of the hole-transport layer (HTL) on the performance of PSCs were studied. Results show that when perovskite thickness is 400 nm, the defect densities of the absorber and the interfaces are both under 10-16 cm-3, and the electron affinity of CuS is 3.3 eV, the PSCs yield higher performance with open circuit voltage (Voc) of 1.07 V, current density (Jsc) of 22.72 mA/cm2, fill factor (FF) of 0.85, and photoelectric conversion efficiency (PCE) of 20.64%. This work provides theoretical guidance for the preparation of high-performance PSCs based on CuS HTLs.

[1] WOLF S D, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039.

[2] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.

[3] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344.

[4] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.

[5] NREL. Best research-cell efficiency chart[EB/OL].https://www.nrel.gov/pv/cell-efficiency.html.

[6] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.

[7] CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. Journal of the American Chemical Society, 2014, 136(2): 758-764.

[8] ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20[J]. Science, 2017, 358(6364): 768-771.

[9] LIU C, ZHOU X Y, CHEN S M, et al. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells[J]. Advanced Science, 2019, 6(7): 1801169.

[10] SHAIKH J S, SHAIKH N S, MISHRA Y K, et al. Low-cost Cu-based inorganic hole transporting materials in perovskite solar cells: recent progress and state-of-art developments[J]. Materials Today Chemistry, 2021, 20: 100427.

[11] YE T L, SUN X C, ZHANG X R, et al. Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells[J]. Journal of Energy Chemistry, 2021, 62: 459-476.

[12] TIRADO J, ROLDN-CARMONA C, MUOZ-GUERRERO F A, et al. Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: application and working insights[J]. Applied Surface Science, 2019, 478: 607-614.

[13] GHRIBI F, ALYAMANI A, AYADI Z B, et al. Study of CuS thin films for solar cell applications sputtered from nanoparticles synthesised by hydrothermal route[J]. Energy Procedia, 2015, 84: 197-203.

[14] KALANUR S S, SEO H. Synthesis of CuxS thin films with tunable localized surface plasmon resonances[J]. ChemistrySelect, 2018, 3(21): 5920-5926.

[15] PATIL S A, MENGAL N, MEMON A A, et al. CuS thin film grown using the one pot, solution-process method for dye-sensitized solar cell applications[J]. Journal of Alloys and Compounds, 2017, 708: 568-574.

[16] AHMAD K, RAZA W, KHAN R A, et al. Numerical simulation of NH3(CH2)2NH3MnCl4 based Pb-free perovskite solar cells via SCAPS-1D[J]. Nanomaterials, 2022, 12(19): 3407.

[17] 李清流, 甘永进, 覃斌毅, 等. 基于Cu2O和SnO2的钙钛矿太阳电池数值模拟[J]. 电源技术, 2020, 44(9): 1321-1323+1359.

[18] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.

[19] ABNAVI H, MARAM D K, ABNAVI A. Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: a simulation study[J]. Optical Materials, 2021, 118: 111258.

[20] HIRASAWA M, ISHIHARA T, GOTO T, et al. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3[J]. Physica B: Condensed Matter, 1994, 201: 427-430.

[21] LIN L Y, JIANG L Q, LI P, et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing[J]. Journal of Physics and Chemistry of Solids, 2019, 124: 205-211.

[22] HAIDER S Z, ANWAR H, WANG M Q. Theoretical device engineering for high-performance perovskite solar cells using CuSCN as hole transport material boost the efficiency above 25%[J]. Physica Status Solidi (a), 2019, 216(11): 1900102.

[23] HAIDER M I, FAKHARUDDIN A, AHMED S, et al. Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells[J]. Solar Energy, 2022, 233: 326-336.

[24] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9): 2934-2938.

[25] YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(14): 5781-5787.

[26] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Letters, 2014, 14(6): 3247-3254.

[27] CHEN J Z, SEO J Y, PARK N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88 (CsPbBr3)0.12/CuSCN interface[J]. Advanced Energy Materials, 2018, 8(12): 1702714.

[28] TAN K, LIN P, WANG G, et al. Controllable design of solid-state perovskite solar cells by SCAPS device simulation[J]. Solid-State Electronics, 2016, 126: 75-80.

[29] XIONG L B, GUO Y X, WEN J, et al. Review on the application of SnO2 in perovskite solar cells[J]. Advanced Functional Materials, 2018, 28(35): 1802757.

[30] SAIVE R. S-shaped current-voltage characteristics in solar cells: a review[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1477-1484.

[31] SADHU A, RAI M, SALIM T, et al. Dual role of Cu-chalcogenide as hole-transporting layer and interface passivator for p-i-n architecture perovskite solar cell[J]. Advanced Functional Materials, 2021, 31(38): 2103807.

[32] CASTELLANOS-GUILA J E, LODEIRO L, MENNDEZ-PROUPIN E, et al. Atomic-scale model and electronic structure of Cu2O/CH3NH3PbI3 interfaces in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44648-44657.

[33] ABDELAZIZ S, ZEKRY A, SHAKER A, et al. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation[J]. Optical Materials, 2020, 101: 109738.

[34] 甘永进, 蒋曲博, 覃斌毅, 等. 锡基钙钛矿太阳能电池载流子传输层的探讨[J]. 物理学报, 2021, 70(3): 038801.

[35] BANSAL S, ARYAL P. Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 747-750.

[36] WANG H X, YU Z, JIANG X, et al. Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid-gas transformation[J]. Energy Technology, 2017, 5(10): 1836-1843.

[37] ZHUANG X M, SUN R, ZHOU D L, et al. Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells[J]. Advanced Functional Materials, 2022, 32(18): 2110346.

黄孝坤, 杨爱军, 黎健生, 江琳沁, 邱羽. 基于CuS空穴传输材料的钙钛矿电池的性能研究[J]. 人工晶体学报, 2023, 52(3): 485. HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials[J]. Journal of Synthetic Crystals, 2023, 52(3): 485.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。