人工晶体学报, 2023, 52 (3): 405, 网络出版: 2023-04-13  

LBO晶体对长腔Nd∶GYAP激光器~1 μm波段激光性能优化研究

Optimization of ~1 μm Band Laser Performance of Long Cavity Nd∶GYAP Laser with LBO Crystal
陈邱笛 1,2,3郑为比 1,2,3张沛雄 1,2,3,*李真 1,2,3陈振强 1,2,3
作者单位
1 广东省晶体与激光技术工程研究中心, 广州 510632
2 广东省光纤传感与通信重点实验室, 广州 510632
3 暨南大学光电工程系, 广州 510632
摘要
本文研究了一种在激光谐振腔内额外加入晶体以优化谐振腔稳定性的方式, 通过在谐振腔内加入折射率合适的晶体有效提高了激光输出性能。本工作搭建了一台Nd3+∶Gd0.1Y0.9AlO3(Nd∶GYAP)晶体激光器, 并在激光谐振腔内置入LBO晶体, 研究对比了LBO对b切和c切晶体激光性能的影响, 以及有无LBO时的激光器性能, 包括输出功率、激光波长、光束质量和偏振特性。结果表明, 当在激光谐振腔内置入LBO后, 光谱和光束质量基本没有发生变化, b切Nd∶GYAP激光器的斜率效率从18.9%提高到24.3%, c切Nd∶GYAP激光器的斜率效率从2.87%提高到10.07%, b切晶体的最大输出功率从0.931 W增加到1.254 W, c切晶体的输出功率从63 mW增加到134 mW。置入LBO后, 输出激光的偏振由于旋光现象也会在一定程度上发生偏转。因此, 在一些必须延长腔长的情况下, 如调谐和锁模操作中, 该工作为其提供了一种提高激光器斜率效率和输出功率的方法。
Abstract
A method of optimizing the stability of the resonant cavity by adding an additional crystal into the laser resonant cavity is studied for the first time. The laser performance can be effectively improved by adding crystals with appropriate refractive index into the resonant cavity. In this study, a Nd3+∶Gd0.1Y0.9AlO3 (Nd∶GYAP) crystal laser device was built, and LBO crystal were added into the resonant cavity. The effects of LBO crystal on the laser properties of b-cut and c-cut crystals were compared respectively. The laser performance with and without LBO crystal was characterized in terms of output power, laser wavelength, beam quality and polarization characteristics. When LBO crystal is inserted into the laser resonant cavity, the slope efficiency of b-cut Nd∶GYAP increases from 18.9% to 24.3%, and that of c-cut Nd∶GYAP increases from 2.87% to 10.07% without changing the spectrum and beam quality. The maximum output power of b-cut crystal increases from 0.931 W to 1.254 W, and that of c-cut crystal increases from 63 mW to 134 mW. However, the polarization of the output laser deflects to some extent due to the optical rotation effect. This research provides a way to improve the slope efficiency and output power of lasers in the cases of the cavity length must be extended such as tuning and mode-locking operations.
参考文献

[1] KE D X, VU A A, BANDYOPADHYAY A, et al. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants[J]. Acta Biomaterialia, 2019, 84: 414-423.

[2] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[3] JI Q, ZONG S G, YANG J B. Application and development trend of laser technology in military field[C]//Proc SPIE 11606, ICOSM 2020: Optoelectronic Science and Materials, 2020, 11606: 32-40.

[4] RAVI-KUMAR S, LIES B, ZHANG X, et al. Laser ablation of polymers: a review[J]. Polymer International, 2019, 68(8): 1391-1401.

[5] LE H T T, TRUONG VAN C, NGUYEN THI M, et al. Our experience using 1064 nm Nd∶YAG in palmoplantar warts[J]. Journal of Cosmetic and Laser Therapy: Official Publication of the European Society for Laser Dermatology, 2022, 24(1/2/3/4/5): 28-32.

[6] 张继魁, 时家明, 苗 雷, 等. 近中红外与1.06 μm和1.54 μm激光兼容隐身光子晶体研究[J]. 发光学报, 2016, 37(9): 1130-1134.

[7] CHEN Y F, PAN Y Y, LIU Y C, et al. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd∶YVO4 self-Raman crystal[J]. Optics Express, 2019, 27(3): 2029-2035.

[8] WU D C, JONES I T, BOEN M, et al. A randomized, split-face, double-blind comparison trial between fractionated frequency-doubled 1 064/532 nm picosecond Nd∶YAG laser and fractionated 1 927 nm thulium fiber laser for facial photorejuvenation[J]. Lasers in Surgery and Medicine, 2021, 53(2): 204-211.

[9] 崔建丰, 李福玖, 邬小娇, 等. 高能量高转换效率355 nm紫外激光器[J]. 发光学报, 2018, 39(12): 1730-1734.

[10] JU M, XIAO Y, SUN W G, et al. In-depth determination of the microstructure and energy transition mechanism for Nd3+-doped yttrium oxide laser crystals[J]. The Journal of Physical Chemistry C, 2020, 124(3): 2113-2119.

[11] YI G Q, LI W W, SONG J H, et al. Structural, spectroscopic and thermal properties of hot-pressed Nd∶(Ca0.94Gd0.06)F2.06 transparent ceramics[J]. Journal of the European Ceramic Society, 2018, 38(9): 3240-3245.

[12] LI D, LIU Q, ZHANG P X, et al. Crystal growth, optical properties and laser performance of new mixed Nd3+ doped Gd0.1Y0.9AlO3 crystal[J]. Journal of Alloys and Compounds, 2019, 789: 664-669.

[13] JING W, LOIKO P, BASYROVA L, et al. Spectroscopy and laser operation of highly-doped 10at.% Yb∶(Lu, Sc)2O3 ceramics[J]. Optical Materials, 2021, 117: 111128.

[14] ZHANG N, WANG Z X, LIU S D, et al. Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm[J]. Optics Express, 2022, 30(13): 23978-23985.

[15] 石自彬, 方 新, 于永贵, 等. 无序Nd∶CNGG晶体的生长及激光性能研究[J]. 人工晶体学报, 2008, 37(2): 360-362+359.

[16] ZHOU H Q, ZHU S Q, LI Z, et al. Investigation on 1.0 and 1.3 μm laser performance of Nd3+∶GYAP crystal[J]. Optics & Laser Technology, 2019, 119: 105601.

[17] WANG Y H, CHEN Q D, ZHANG P X, et al. Fabrication of Sb2O3 by an improved chemical reaction assisted vertical micro sublimation method and its saturable absorber performance[J]. Optical Materials Express, 2022, 12(4): 1337-1346.

[18] HONG H, CHEN Q D, WANG Y H, et al. An effective 2D saturable absorber In2O3 to realize passively Q-switched laser output[J]. Optics & Laser Technology, 2022, 155: 108375.

[19] 于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668+583.

[20] ARKHIPOV M V, ARKHIPOV R M, SHIMKO A A, et al. Mode locking in a Ti: sapphire laser by means of a coherent absorber[J]. JETP Letters, 2019, 109(10): 634-637.

[21] STEHLK M, ULC J, BOHCˇEK P, et al. Wavelength tunability of laser based on Yb-doped GGAG crystal[J]. Laser Physics, 2018, 28(10): 105802.

[22] YAN R P, LIU Y, LI X D, et al. Harmonic mode locking underneath the Q-switched envelope in passively Q-switched mode-locked Nd∶GdTaO4 1066 nm laser[J]. Infrared Physics & Technology, 2020, 111: 103553.

[23] LING W J, XIA T, DONG Z, et al. Passively mode-locked Tm, Ho∶LLF laser at 1895 nm[J]. Journal of Optics, 2019, 48(2): 209-213.

[24] 王希军. 56 MHz重复频率端泵SESAM连续波锁模Nd∶YVO4激光器[J]. 发光学报, 2012, 33(12): 1342-1346.

[25] MAO T W, DUAN Y M, CHEN S M, et al. Yellow and orange light selectable output generated by Nd∶YAP/YVO4/LBO Raman laser[J]. IEEE Photonics Technology Letters, 2019, 31(13): 1112-1115.

[26] FERREIRA M S, WETTER N U. Diode-side-pumped, intracavity Nd∶YLF/KGW/LBO Raman laser at 573 nm for retinal photocoagulation[J]. Optics Letters, 2021, 46(3): 508-511.

[27] 薛建华, 任清华, 王爱坤. LBO晶体Ⅱ类相位匹配走离角及互作用长度的计算[J]. 人工晶体学报, 2009, 38(6): 1463-1466+1471.

[28] SHILOVA G V, SIROTKIN A A, ZVEREV P G. Diode pumped Nd3∶YVO4 laser with intracavity SHG in LBO and SRS in Ba(NO3)2[C]//2018 International Conference Laser Optics (ICLO). June 4-8, 2018, St. Petersburg, Russia. IEEE, 2018: 37.

[29] GAO Y H, LI Y J, FENG J X, et al. Low noise continuous-wave single-frequency dual-wavelength laser operating at 532 nm and 1.06 μm[J]. Chinese Journal of Lasers, 2019, 46(4): 0401005.

[30] ZOU J Y, ZHOU L B, ZHENG W X, et al. An in-band diode-end-pumped high-power and high-efficiency ultrashort pulse Nd∶YVO4 bulk laser mode-locked by a frequency doubling LBO crystal[J]. Infrared Physics & Technology, 2021, 116: 103759.

[31] 刘 娟, 谢 茹. 旋光现象借助MATLAB的图形呈现[J]. 电子测试, 2013(5): 220-221.

陈邱笛, 郑为比, 张沛雄, 李真, 陈振强. LBO晶体对长腔Nd∶GYAP激光器~1 μm波段激光性能优化研究[J]. 人工晶体学报, 2023, 52(3): 405. CHEN Qiudi, ZHENG Weibi, ZHANG Peixiong, LI Zhen, CHEN Zhenqiang. Optimization of ~1 μm Band Laser Performance of Long Cavity Nd∶GYAP Laser with LBO Crystal[J]. Journal of Synthetic Crystals, 2023, 52(3): 405.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!