应用激光, 2023, 43 (2): 70, 网络出版: 2023-03-30  

中厚板铝合金激光-MIG复合焊过程应力与变形研究

The Study of Stress and Deformation During Laser-MIG Hybrid Welding of Medium and Heavy Plate Aluminum Alloy
作者单位
1 西南石油大学新能源与材料学院, 四川 成都 610500
2 西南石油大学机电工程学院, 四川 成都 610500
3 四川泸天化弘旭工程建设有限公司, 四川 泸州 646000
4 国家知识产权局专利局专利审查协作四川中心, 四川 成都 610500
5 中国特种设备检测研究院, 北京 100029
摘要
采用ANSYS对中厚板铝合金的激光-MIG复合焊接过程进行数值模拟, 分析激光-MIG复合焊接过程中温度场、残余应力及焊接变形的分布情况。结果发现, 由于工件表面与内部的散热速度差异, 温度场呈现中间高、周围低、以焊缝为中轴线的椭圆形分布。随着焊接的进行, 工件的等效应力在不断增大, 焊接过程中工件两侧出现>300 MPa的高应力区; 随着工件的冷却, 工件两侧刚性固定面的应力集中开始不断消退, 且高应力区在工件冷却后消失。工件完全冷却后, 高应力区域主要集中分布在焊缝周围, 最高值可达175 MPa, 工件两侧应力分布较为均匀, 在125~130 MPa范围内。焊后工件总变形呈现以焊缝为中轴线的椭圆形分布, 焊缝两侧单位变形量最高可达0.19, 焊缝部位单位变形量为0.09。
Abstract
The laser-MIG welding process of medium-thick plate aluminum alloy is simulated by ANSYS, and the distribution of temperature field, residual stress and welding deformation in the laser-MIG composite welding process are obtained. Results show that the temperature field presents an elliptical distribution with the weld as the central axis, and the temperature field is high in the middle and low around the workpiece. Because the equivalent stress of the workpiece is increasing with the welding, during the welding process, a high stress zone of > 300 MPa appears on both sides of the workpiece. With the cooling of the workpiece, the stress concentration of the rigid fixed surface on both sides of the workpiece begins to disappear, and the high stress area disappears after the workpiece is cooled. After the workpiece is completely cooled, the high stress zone is mainly distributed around the welding seam, with the maximum value up to 175 MPa. The stress distribution on both sides of the workpiece is relatively uniform, in the range of 125-130 MPa. After welding, the total deformation of the workpiece presents an elliptical distribution with the weld as the central axis. The maximum deformation on both sides of the weld can reach 0.19, and the weld deformation is 0.09.
参考文献

[1] FARAJI A H, MORADI M, GOODARZI M, et al. An investigation on capability of hybrid Nd: YAG laser-TIG welding technology for AA2198 Al-Li alloy[J]. Optics and Lasers in Engineering, 2017, 96: 1-6.

[2] JIANG Z, HUA X M, HUANG L J, et al. Double-sided hybrid laser-MIG welding plus MIG welding of 30-mm-thickaluminium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 903-913.

[3] CAMPANA G, FORTUNATO A, ASCARI A, et al. The influence of arc transfer mode in hybrid laser-mig welding[J]. Journal of Materials Processing Technology, 2007, 191(1-3): 111-113.

[4] CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.

[5] BUNAZIV I, AKSELSEN O M, SALMINEN A, et al. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 233: 107-114.

[6] 武传松, 陈定华, 吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟[J]. 焊接学报, 1988, 9(4): 263-269.

[7] 卢宇峰, 陆皓. 激光焊接圆锥体热源模型及参数研究[J]. 焊接, 2012(1): 41-44.

[8] 李巧艳, 赵昕, 辛志彬, 等. 6082铝合金激光-MIG复合焊接工艺及接头组织性能[J]. 应用激光, 2021, 41(6): 1168-1177.

[9] 付盼程, 马生翀, 赵勇, 等. Q345E钢激光-MIG复合高速焊工艺及接头力学性能研究[J]. 热加工工艺, 2021, 50(1): 6-9.

[10] 周旭东, 赵艳秋, 李昊, 等. 5A06铝合金激光-MIG复合焊接焊缝微观组织及硬度分析[J]. 应用激光, 2021, 41(1): 7-12.

[11] 丁宁, 钟红强, 黄嘉沛, 等. 基于铝膜中间层的聚碳酸酯激光透射焊接热-固耦合数值模拟[J]. 焊接学报, 2021, 42(2): 46-50.

[12] 马驰, 张东. 有限元分析在相变材料中的应用研究综述[J]. 新技术新工艺, 2020(11): 6-10.

[13] 汪建华. 焊接数值模拟技术及其应用[M]. 上海: 上海交通大学出版社, 2003.

[14] 吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9):0902003.

[15] 杨广雪, 刘志明, 李广全, 等. 基于等效结构应力法的焊接构架疲劳损伤评估[J]. 铁道学报, 2020, 42(7): 73-79.

[16] 李冬林. 焊接应力和变形的数值模拟研究[D]. 武汉: 武汉理工大学, 2003.

王良, 陈香锦, 晏文涛, 罗婧, 胡议文, 徐明, 吴登. 中厚板铝合金激光-MIG复合焊过程应力与变形研究[J]. 应用激光, 2023, 43(2): 70. Wang Liang, Chen Xiangjin, Yan Wentao, Luo Jing, Hu Yiwen, Xu Ming, Wu Deng. The Study of Stress and Deformation During Laser-MIG Hybrid Welding of Medium and Heavy Plate Aluminum Alloy[J]. APPLIED LASER, 2023, 43(2): 70.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!