2.8 μm Er∶ZBLAN光纤孤子自压缩放大器
下载: 1003次
理论和实验研究了一种2.8 μm Er∶ZBLAN光纤孤子自压缩放大器。 放大器采用锁模Er∶ZBLAN光纤振荡器作为种子源,锁模脉冲宽度为240 fs,峰值功率为16.9 kW,重复频率为54.3 MHz。通过单级孤子自压缩放大,实验获得了脉冲宽度为110 fs、峰值功率达151 kW的中红外飞秒脉冲输出。
Mid-infrared (220 μm) laser has a broad prospect in the applications including molecule spectroscopy, material processing, biomedicine, and basic physics research. Mode-locked all-solid-state laser, optical parametric oscillator or amplifier, and mode-locked fiber laser are some general methods for generating mid-infrared ultrafast laser. In the generation of this laser, the mode-locked fiber laser stands out owing to its advantages of flexible structure, fast heat dissipation, and good beam quality. Currently, diode-pumped Er∶ZBLAN fiber has been widely investigated at 2.8 μm because of its high gain and efficiency. Researchers from Laval University have realized femtosecond mode-locked pulses at 2.8 μm using a nonlinear polarization rotation technique, with a pulse width of 207 fs and a peak power of 3.5 kW. However, owing to the high nonlinearity of single-mode fiber and the large anomalous dispersion of ZBLAN fiber at 2.8 μm, the intracavity soliton tends to split at a low peak power. It is an efficient way to amplify the mode-locked pulses to obtain higher pulse energy and peak power. In this study, we reported a 2.8-μm Er∶ZBLAN fiber soliton self-compression amplifier with a pulse width of 110 fs and a peak power of 151 kW.
Based on a generalized nonlinear Schrödinger equation, we numerically simulated the pulse evolution in the fiber amplifier. Influence of the saturation energy on the output pulses was investigated. The pulse evolution process in the fiber was used to explain the soliton-self-compression phenomenon in detail (Fig. 1). Guided by the simulated results, we constructed a 2.8-μm Er∶ZBLAN fiber amplifier, seeded by a nonlinear polarization rotation (NPR) mode-locked Er∶ZBLAN fiber laser (Fig. 2). The amplified pulses were characterized using a mid-infrared spectrometer (Ocean Optics, SIR5000) and intensity autocorrelator (APE, PulseCheck 150) under different incident pump powers.
Fig. 1 shows the numerical simulation results. The pulse width of the seed pulse is 240 fs, and the peak power is 3.1 kW. The spectrum gradually broadens as the amplified pulse energy increases from 4 nJ to 17 nJ owing to the self-phase modulation [Fig. 1(a)]. The amplified pulse is shortened to 124 fs because of the combined effect of the anomalous dispersion and self-phase modulation [Fig. 1(b)]. Slight spectrum red-shift is observed through the soliton self-frequency shift. The soliton splitting due to the excess accumulation of nonlinear phase shift limits the higher pulse energy. Figs. 1(c) and 1(d) show the pulse evolution with the fiber in the time and frequency domains, respectively; the soliton self-compression process is clearly visible. Fig. 3 shows the experimental results of the mode-locked fiber laser. At 54.3 MHz, stable mode-locked pulses with a pulse width of 240 fs and a peak power of 16.9 kW are obtained. The seed source is connected to the amplifier fiber, and the average power output is measured (Fig. 4). The shortest pulse width after fiber amplification is 110 fs [Fig. 5(a)]. The center wavelength is shifted from 2780 nm to 2809 nm [Fig. 5(b)]. When the pulse energy reaches 16.6 nJ, the calculated peak power of the output pulse is 151 kW. Pulse splitting is observed as the pump power increases further.
Herein, we report a high-peak-power Er∶ZBLAN fiber amplifier at 2.8 μm that is seeded by an NPR mode-locked Er∶ZBLAN fiber laser with a pulse width of 240 fs and a peak power of 3.1 kW at 54.3 MHz. A numerical simulation of the model amplifier based on a generalized nonlinear Schrödinger equation is used to analyze its operation and demonstrate the soliton self-compression process. We experimentally obtain the amplified pulses with a pulse width of 110 fs and a peak power of 151 kW. Our results show that self-compression amplification is a reliable method for producing high-peak-power mid-infrared ultrashort pulses at 2.8 μm. In future, higher-peak-power pulses are expected from the Er∶ZBLAN fiber amplifier through dispersion management and system optimization.
1 引言
中红外(波长为2~20 μm)激光在分子光谱学、材料加工、生物医疗、基础物理研究等方面有着良好的应用前景[1-6],例如:中红外波段拥有许多气体分子的特征吸收峰,因此中红外激光可以应用于痕量气体探测[7];聚焦的中红外激光能够深入到红外半导体材料的内部,触发双光子/多光子吸收,实现半导体材料的内部刻蚀[8]。高峰值功率中红外超快激光还可以作为基础光源,通过非线性频率变换(比如孤子自频移、参量下转换、超连续产生、带内差频等)产生光谱更宽、波长更长的中红外相干激光[9-12]。
产生中红外超快激光的途径一般包括:锁模全固态激光器、光参量振荡器/放大器以及锁模光纤激光器[13-17]。其中,光纤激光器兼具结构灵活、散热快以及光束质量好的特点,是产生中红外超快激光的优良平台。目前的报道中常用Er∶ZBLAN光纤作为增益介质来产生2.8 μm激光,主要是因为Er∶ZBLAN光纤可以采用高功率的976 nm半导体激光器泵浦,并且交叉弛豫还能够突破量子亏损的限制[18-19]。基于非线性偏振旋转锁模技术,拉瓦尔大学的研究人员率先在2.8 μm波段实现了飞秒锁模脉冲输出,脉冲宽度为207 fs、峰值功率为3.5 kW[20]。然而,ZBLAN光纤在2.8 μm存在较大的负色散,加上单模光纤具有较强的非线性,导致腔内的孤子在较低峰值功率时就会分裂[21]。为了获得更高的脉冲能量和峰值功率,可对锁模脉冲进行放大[22]。
本文报道了一种能够实现孤子自压缩的2.8 μm Er∶ZBLAN光纤放大器。通过数值仿真,分析了光纤增益、色散、自相位调制、拉曼效应对放大脉冲宽度和光谱的影响。放大器采用锁模Er∶ZBLAN光纤振荡器作为种子源,锁模脉冲的宽度为240 fs、峰值功率为16.9 kW。在无色散管理的情况下,实验获得了脉冲宽度为110 fs、峰值功率为151 kW的放大脉冲。在孤子自压缩的同时,拉曼效应导致放大脉冲的光谱发生轻微的孤子自频移。
2 数值仿真
当脉冲宽度小于1 ps的超短脉冲在光纤中传输放大时,除了要考虑增益、色散和自相位调制效应,还需要考虑非线性拉曼效应。本研究采用广义非线性薛定谔方程对脉冲放大的演化过程进行模拟,方程的具体表达式为[23]
式中:A(z,τ)为脉冲电场的慢变包络时域函数,τ和z分别为延迟时间参数和传输坐标;g为与频率相关的饱和增益函数,其小信号增益系数为8 m-1 [24];βn为ZBLAN光纤的各阶色散值;γ=n2ω0/cAeff为光纤的非线性系数,n2为克尔系数,ω0为载波频率,c为光速,Aeff为有效模场面积;R(t)=(1-fR)δ(t)+fRhR(t)为ZBLAN光纤在中心波长附近的非线性响应函数,其中拉曼相应函数

图 1. 不同增益时放大脉冲模拟结果以及输出能量为17 nJ时,脉冲在光纤内传播的演化过程
Fig. 1. Simulated amplified pulse under different saturation gain energies and pulse evolution in the fiber when output energy is 17 nJ
3 实验装置

图 2. 2.8 μm锁模Er∶ZBLAN光纤振荡器及放大器示意图
Fig. 2. Schematic of 2.8 μm mode-locked Er∶ZBLAN fiber oscillator and amplifier
放大器采用相同的Er∶ZBLAN光纤作为增益介质,光纤长度为1.8 m。两端以8°角切割,一方面是防止菲涅耳反射对锁模振荡器造成干扰,另一方面是为了提高放大器自发辐射放大的阈值。振荡器和放大器之间的隔离器,能够阻断放大器的激光和泵浦光对振荡器的干扰,提高锁模振荡器的稳定性。放大器采用相向泵浦方式,有利于提高放大器的能量转换效率。
利用光电探测器(VIGO System, PCI-2TE-12)采集锁模脉冲,然后将其输入示波器和频谱分析仪进行锁模稳定性分析。示波器与频谱分析仪集成在一起,其型号为Tektronix公司的MDO3102型,工作带宽为1 GHz。使用热敏功率计(Thorlabs PM100D/S310C)测量输出功率,使用中红外自相关仪(APE,PulseCheck 150)和光谱仪(Ocean Optics,SIR5000)分别测量振荡器和放大器的输出脉冲宽度和光谱。
4 结果和分析

图 3. 锁模振荡器的输出结果。(a)纳秒和毫秒尺度的脉冲序列;(b)脉冲信噪比;(c)锁模脉冲自相关曲线;(d)锁模光谱
Fig. 3. Output performance of mode-locked oscillator. (a) Pulse train in nanosecond and millisecond time scales; (b) signal-to-noise ratio; (c) autocorrelation curve of mode-locked pulses; (d) mode-locked spectrum
放大器泵浦功率与输出功率的关系如

图 5. 放大器输出结果。(a)放大脉冲自相关曲线;(b)放大光谱
Fig. 5. Output performance of amplifier. (a) Autocorrelation curve of amplified pulse; (b) amplified spectrum
5 结论
研制了2.8 μm Er∶ZBLAN光纤锁模振荡-功率放大系统。在振荡器部分,采用非线性偏振旋转锁模技术获得了脉冲宽度为240 fs的孤子锁模脉冲输出。通过孤子自压缩放大,实验获得了脉冲宽度为110 fs、峰值功率为151 kW的2.8 μm中红外超短脉冲。结合理论与模拟分析,证实了孤子自压缩放大是一种可靠的中红外超短脉冲激光产生方法。未来通过更进一步的色散管理与系统优化,有望实现更高峰值功率的放大脉冲产生。
[6] 刘江, 谭方舟, 刘晨, 等. 高功率超短脉冲掺铥光纤激光器的研究进展[J]. 中国激光, 2017, 44(2): 0201003.
[10] 贾志旭, 姚传飞, 李真睿, 等. 新型高功率中红外光纤激光材料与超连续谱激光研究进展[J]. 中国激光, 2019, 46(5): 0508006.
[15] 聂鸿坤, 宁建, 张百涛, 等. 光学超晶格中红外光参量振荡器研究进展[J]. 中国激光, 2021, 48(5): 0501008.
[16] 胡明列, 王珏, 范锦涛. 光纤激光器泵浦的飞秒光学参量振荡器研究进展[J]. 中国激光, 2021, 48(19): 1901001.
[23] AgrawalG P. Nonlinear fiber optics[M]. San Francisco: Academic Press, 2013.
[24] Duval S, Olivier M, Fortin V, et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm[J]. Proceeding of SPIE, 2016, 9728, 972802: 9-16.
周亦诚, 覃治鹏, 谢国强. 2.8 μm Er∶ZBLAN光纤孤子自压缩放大器[J]. 中国激光, 2022, 49(1): 0101009. Yicheng Zhou, Zhipeng Qin, Guoqiang Xie. 2.8-μm Er∶ZBLAN Fiber Soliton Self-Compression Amplifier[J]. Chinese Journal of Lasers, 2022, 49(1): 0101009.